AD 717697

AFCRL-70.0580
26 AUGUST 1970
TRANSLATIONS, NO. 84

| N
AIR FORCE CAMBRIDGE RESEARCH LABORATORIES

L. G. HANSCOM FIELD, BEDFCRD, MASSACHUSETTS

On the Foundattons of Crystal Opt|cs
Part |—Dlsperslon Theory
Part ll— Theory of Reflection and Refréctlon

P.P. EWAID .- o _

Port | - Dispersion Theory Tronslated by Dr. Lomll Holllngswoﬂh from
Annalen der Physlk, 49, 1916, No. §

Port It « Theory of Ruflecticn and Refroction Translated by Dr. Lowell Hollingsworth
from Annalen der Physik, 49, 1916, No. 2

Postscript 1970 by P.P. Ewald

This document hou been epproved for public
rel eose und sale; its distribution is unlimited.

United States Alr Forcé




kAT oA
iu‘“{’.ﬂ;”'q

h
V]
R R

s

2
i
il

G

i
S

o et o L R i
I@ . . b X
il el
t;ﬂnk..‘m“: i R

R}

AR

Abstract 1970

This two part paper investigates the propagation of light in the visible
region through a erystalline medium.

In Pari I, which is a slightly shortened version of the author's doctoral
thesis of 1912, the objective is to determine if the anisotropic arrangement
of ordinary (isotropic) dipoles at the nodal points of an orthorhombic lattice
would account for the existence of double refraction. The value of the com-
puted birefringence is found o be comparable to the observed value. Addi-
tionally some features of the traditional "thcory of dispersion" are disclosed
and ciarified. In the older theories the “incident optical wave" plays a role
but it is shown that in 2 medium which extends to infinity in ali directions
no such wave should be assumed: The refractivity is shown to arise as an
internal property of the medium,

In Part I, 2 crystalline medium is considered as filiing a half-space
and having a plane boundary at z = 0. A plane optical wave is incident on
this medium. Because of the linearity of the equations it has to be super-
imposed on the field originating in the crystal. It is shown that this inci-
dert optical wave is actually preventad from entering the crystal because of
the modification produced in the field of the crystal by the intrcduction of 7
bourdary. Boundary waves are found to exist on both sides of the boundary.
The bigher their order, the more rapidly they attenuate as a function of dis-
tance away from the boundary but the zero order waves are ordinary un-
dampted plane waves of vacuum velocity ¢. The fields outside and inside
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Abstract 1970

the medium are connected by the Fresnel formulae: These follow from the P

condition thai the optical field inside the medium and the oscillations

generated there form a self-coasisient system.

Material Added 1979. The conclusion that the incident optical field
cannot penetrate the erysial brundary, together with 2 similar conclusion
in a paper by Oseen, is the basis of the Ewaid-Oseen Extinction Theorem.

The same methods and fi»i} transformations developed in this two part
paper were applied in two later papers which were published as Parts III
and IV, These extend the treatment to the passage of X-rays through
crystals. "Postscriot 1970" published here indicates the relationship of
these four parts and further developments of the subject as well as refer-
encing the papers noted above.

P.P. Ewald
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Preface

E Several years ago wanting to knew more about the traramission of

e light in materials, I found that an explanation of the electmma.gnetic theory
of transmission of light in materials was contained in the book, "Principles
of Optics” by Born and Wolf, There I also found an explanation of the

} Ewald-Oseen Extinction Theorem and reference to their original papers.

3 In order to have a better understanding of the principles, I atiempted to

-3 translate Ewald's paper which actualiy was publisher in twc parts. I foumd
: it to be not only basic to the Ewald-Osevn Extinction Theorem but basic

3 to an understanding of the principles of reflection and refraction of light
when considered on an atomic level. The basic nature of the paper is the
justification for this translation.

= In printing this translation, the page formzt and the placement of head-
irgs has followed standards establisked for AFCRL reports. The numbered
equations of the original paper which started with one in each section, have

been numbered so that the numbers are consecutive throughout the transla-
tion.
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The illustrations have been reproduced photographically from those in
the original paper, and have also been nuunbered consecutively. Many of
the more complicated mathematical equaticas have been reproduced photo—
graphically to insure against error in trauscription. There was consider—
able use of "italics" in the original paper, but sirce the reproduction is
from iyped copy and no italic characters were available, italicized
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Statements and words are indicated by underlines. Quantities and equations
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On the Foundations of Crystal Optics

introduction to Part | (Dispersion Theory) ond
Part {1 {Theory of Reflection and Refraction)

The problem of yroviding a foundation of crystal optics by means of
the structure theory of crystals formed the subject of my thesis (Ewald,
1912(1)). The task then before me was {o investigate whether dipoles,
which, since the work of Drude, had been assumed to account for the dis-
persion of light, would also account for double refraction when suitably
arranged in an anisotropic manner so 8s to serve as & model of a simpie
orthorhombic crystal. H this were the case, one would furthermore have
to determine whether the magnitude of such double refracticn is of 2 com-
parable order tc that observed in crystals of similar values of the axial
ratios. These questions arose, {o be sure, before the experiments of Laue
and his co-workers on the interference of X-rays in crystals had shown
the correctness of the structure theory of crystals. It was, in fact, hoped
to obtain an argument in favor of this theory from the theory of dispersion.

{Receivecl for publication 26 June 1970)

{1) Reference added 1976: Ewald (1912) Dispersion und Doppelbrechung
von Elektronengittern (Kristallen). (Thesis, Univ. of Munich, 1912)
Gdtiingen, Dieterischsche Universitits - Buchdruckerei, p 45.
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The result of the thesis is that without having to assume extreme ratios
of the axes, a lattice arrangement of dipoles can by itself give a strong
3 birefringence because of the inequality of the spacing of the dipoles in the
: different directions. Furthermore, that the law connecting the index of
refraction to the direction of propagation of the wave (illustrated by the sur- .
face of wave normals) is fulfilled. The assumed simple model of the crystal
is thus correct from the point of view of optics,

The numerically calculated birefringence of a lattice with the saine
axial ratios as those of anhydrite (anhydrous calciura sulphate), led to dif-
ferent values of the birefringence than the observed ones. This was as-

: cribed to the fact that the crystal consists not of one simple crystal lattice,
but of many simple interpenetrating lattices. This type of crvstal structure
‘ has been revealed by X-ray investigations and is now well established.

It is not yet possible today to decide whether the birefringence in ;ome

cases is determined entirely by the anisotropy of positions, or whetber in

%3 all cases there exists also an anisotropy of the bonding, that is, a different
f restoring force in the directions of each of the three principal axes. At

.';’ present we do not know of a birefringent crystal of sufficiently simple
chemical nature for which the crystal structw...z 13 known from X-ray dif-
'3 fraction so that its positional birefringence can be czlculated on the basis

of the methods used in my dissertation. Then by comparison with ex-
perience, one could evaluate the anisotropy of the bonds and thereby obtain
information about the internal forces acting in the crystal. Sulpbur might
. be a suitable example as soon as its structure is entirely known., The
E numerical calculations which are fully given in the thesis have been con-
v siderably shortened in the present publication.

Our main interest lay in the problem of the biref.*.ngence: its magni-
3 tude and the way it comes about. However it turned out that some novel
E: facets appeared from the point of view of the general theory of dispersion.
The precisely given positions of the dipoles made a more rigorous cglcula-
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forced attention upon ti. .mselves. The first questions is: How, exzctly,
are the outgoing fields of the individual dipoles to be summed in the crystal
which we think of as being of infinite size ? This is a question of conver-
gence which however remains meaningful aiso for the finite crystal.

A second new aspect, ai least with respect to the Planck and Lorentz
theory, was the omission of the "incident wave”. Planck and Lorentz let
the single dipole be excited by an electrical force, which consists of two
parts, the "external one" (&} and a second contribution which comes from
the other dipoles of the body. The. first part, &,, found no place in the
theory of the infinite crystal. The mutual interactions alone maintained
e {he dipole vibrations, so that the compleie state of oscillation of the crystal

had fc be looked upon as some type of free~-vibration, not requiring an
external forcing field. The idealization of the problem by considering a
crystal with no boundary was found to contair justification for the omission
of the exterior exciting field €, . In a finite crystal, its boundary should
play the role of deleting the incident wave &, for the entire interior of the
crystal. Ouly in tkis way was it possible to understand that in an unboiunded
crystal no exterior excitation can ke moticed,

In this assextion lies the admission that for a complete understanding
of dispersion theory the treatment of reflectlon and refraction is absolutely
essential. This supplementary theory of the events in ihe boundary of the
body will be given in the second part of this paper, and that part is new
and original, @) It treats the following problem:

Given a2 bounded crystal - which fills the entire upper half space above
the boundary surface z = 0; from below a plane wave §, is incident on the
boundzzy at an arbitrary angle. Find the mede of vibration of the dipoles,
and whether this leads to the formation of refracted and reflected waves -
and implicitly to the Fresnel formulas. Finally, can the anticipated ir-
fluence of the boundary be showrn ?
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(1) Note added on galley pivof. Mr. C.W. Oseen recenily, in a dif-
ferent context has also calied attention to the necessity to treat dispersion
theory In the sense discussed above, Oseen, C.W. (1915) Physikal.
Zeitgchr, 1€:40¢.
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This problem of the bounded crysta! appears at first sight to be con-
siderably more difficult than that of the unbounded crystal. In actual fact,
however, the vibrational mode as found in the thesis which resembles the
frce vibrations of a mechanical system is a stepping stone for dealing with *
the bounded crystal. Just because the surface layer screens the inside of
the crystal from the invasion of the external wave, a mcde of oscilistion
inside the crystal becomes possible as if there were neither a boundary nor
an incident wave. Since this mode of vibration is well knowa to us for the
unboundes crystal, it requires liftle effort to reduce the case of the
beounded crysta: to the case of the unbounded crystal.

The second part of this paper may be considered an extension or con-

T
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tinuation of the problem treated in the thesis and in particular as a proof
of a statement made there. Furthermore, a particular point that was not
treated before will be discussed. This 1s the transition from the precise
microscopic field that exists between the dipoles, to the macruscopic
average field that is used in the phenomenological theory for the treatment
of reflection and refraction and whose amplitudes are determined by the
Fresnel formulas, These are concerned with the comparison of the field
stre~gths outside and inside of the crystal. One has therefore to watch
closely the relations between the calculated microscopic field in free space
between the dipoies of the body and the Maxwellian field quantities & and
T inside tae body. For the dispersion problem preper, we are only in-
terested in establishing the pbase velocities with which the quantities €,
D and P propagate. For this purpose it is not necessary to distinguish
between § and® , and according to the thesis, the resulis can be obtained
solely from the vector potential without even specifying the field strengths.
This discussion, however becomes necessary in connection with the Fresnel

formulas. Section 5, Part II, really beiongs just as much to Part I (dis- 7
persion) as to the theory of refraction, but was omitted from Part I in

order not to interrupt the traia of thought for the treatment of dispersion 4
theory.
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Finally, let it be mentioned that the behavior of crystals for very short
waves {x-1ays), is contained in the rigorous calculations, See Section 7.
It is of particular interest to follow the transition from the case of x-rays
with a multiplicity of interference rays to the case of optical rays with

only three waves (the incident, the refracted, and the refiected waves).
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Part I. Dispersion Theory*

1. STATEMENT OF PROBLEM

{1) Given a simple orthorhombic 1z . ice with lattice points at cartesian
coordinates

X=2al; Y=2bm; Z=2¢cn
(I, m, n integers from — 00 to 4 o)

Electrons are bound to these lattice points with quasi-ela -tic and isotropic
forces. The last statement means that the restoring force between the
electron and the lattice point deperds only on the magnitude but not on the
direction of the displacemen:. With what velocity and what attenuation can
one have a plane wave of a given frequency propagate in this medium ?

(2) We begin with the remiunder that for the purpose of calculating
optical fields the osciliating electrons of charge -e can be replaced by
oscillating dipoles. We imagine fixed charges +€ and -e to be placed at
the lattice points. Then +e together with the displaced electron form the

* Shortened thesis Munich 1912, I wish to not fail to express my
sincere thanks in this ptace to Profezsor Sommerfeld for his suggestions
and support in this work.
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dipole, while the remaining charges -e at the lattice points produce an
electrostatic field in which we are not interestad.
In the equation of a plane wave:

C = Re(Ee-irt+iry,

E is the amplitude, n the frequency, and s is the coordinate measured in
the direction of the wave noimal. The sought for values of phase velocity
and attenuation are contained in the constant k whose real part le:1 gives the
phase velocity q = n/ kl, while the imaginary part k2 produces the attenua-~
tion.

One now makes the assumption that the planes perpendicular to the
planes s = constant are planes of equal dipole phase. The phase velocity q
with which the phase propagates in the lattice is at first not fixed. One now
shows that the superposition of the outgoing individual fields of the dipoles
prodices a (continuous) field strength which has likewise the form of a
plane wave; this being a2 direct consequence of the assumption made for the
{discrete) dipole oscillations: furthermore, that the frequency and attenua-
tion of both waves - of the field and of the dipole excitation - are identical.
In order to determine these quantities which are both contained in the com-
plex constant k, we have to insure the dynamical possibility or consistency
of the origina! assumption, This requires that each dipole is excited into
oscillation by the field impinging on it. This condition can be fuifiiied for
any frequency by proper choice of the arbitrary constant k and this yields
the relatioaship between frequency and phase velocity, namely the disper-
sion formula,

2. METHGD OF CALCULATION

et XYZ be the coordinates of a dipole and xyz the coordinates of a
field point; and further let

S=Xcos(s,z) + Ycos(s,y) +Zcos(s2)

B T L T I ST L PP S
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be the aistance of a dipole from the plune of equal dipole phase which
centains the origin: let q Le the (undetermined) dipole phase velocity, n
the frequency in the time factor e 0% 50 that

e- in/g.8
is the phase factor propagating in tte direction ~S of the dipole excitation.

The individual field emitted by a dipole with the charge ze is then
characterized by the Hertz vector

. kR 8
- = — —
$'t‘“-eﬂ"}l§‘eu( € ') &Y

in which R= [(X-%)2 + (Y-9)2 + (Z-2)2] /2, signifies the distance from
dipole to field point. The term R/c in the exponent indicates that the field
itself prupagates toward the field point with the same velocity c as in free
space.*

Since all dipoles have the factor e ot g common, we omit it and in-
troduce

)

" %
7-&‘, -;—i

and then write for the significant part of the Hertz vector

1 ik w—i
B=ea. -l &)

and recall that in a material with dielectric constant 1, the electric field

strength € and the magnetic field strength § can be obtained through the
operations

*The original reads 'pure ether" but free space has been substituted
as the modern equivelent expression.
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€ = curl curl B; = —curl B
=grsddiv$—d$. *x (4)

According to the equation fulfilled by R, namely
A + k2 R=0 &)

4P may be replaced by —k* P
The total field is then obtained Zrom the potantial

‘ihk—its

—\:$ = ea-\-‘—££——

=€ﬂ”, (6)

where the sum extends over all the dipoles of the lattice. This total
potential becomes infinite as 1/R near each dipole and thus in soiid ma-
terials it is spatially an extremely rapidly changing field since in solid
bodies many hundreds of molecules occur within a wavelength of light, For
this abruptly changing wave field, the .. :rvable optical field represents
an overall ground swell which can be obtained by averaging,

The average optical field is by po means decisive for the oscillations
of the indi7idual dipoles. These, rather, are caused by the excitation field
that we write

eall' =2'$ ™M

where the accent indicates that the sum shall be taken over all the excited
dipoles with the exception of the one under consideration. The excitation
field is accordingly equal to the total field reduced by the contribution

*Note: The operator A is now more often written Vzandthis change
could have been made in translation, but it was decided to keep the original
form.
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coming from the test dipole. The equation for the oscillation then is given
[from Eq. (4)]

mp+gP+fp=eC
= edcurl curl{a /1" - e~ i*9 6]

Here

p=a.c—i!l

is the elongation, m is the mass, e is the charge, { is the quasi-elastic
force, g the coefficient 5f friction. By introducing the proper frequency
of the dipole

Nozz L
n

the equation becomes
a(— x*+at— in i) =-§cnr1 curla IT".

To shorten this we set
—3-(5'3—-3’—-:'!—2)-9 {9

anc replace curl cur] with its equivalent: (grad div -A). Thus we have
to fulfill

a (Q + AITl") = grad div o /T (10)

or in components (the indices on the potential Ii' indicate differentiation
while those on the amplitude a signify component formation):

e vy

e e & e




Q4+ AIr— I j—ao IT_, —-q /', =u
—a, T +6 {2441 -1 y)—a T, =0
—o T, —o ', +o(2+d4-1IT) = 0. (102)

The condition for simultareous fulfiilment of these three homogeneous equa-

tions is:
!.Q + 4T - IT, m,, -, ;
I 1 Qy4amr-m, -1, |=0.
| —, Qu A —1r,
ay

The II'... depend on the constant k whick determinss the dipole phase
and this is the same as that wkich determines the propagation of the opticx:
field. Thus th: determinant Eq. {11) expresses the relationship between
the index of refraction

y =

-4
and the quantity Q, which contains the electron constants and the frequency
of the optical wave. (Law of dispersicii.)

We obtain the principal indices of refraction of the orthorbombic lat-
tice by assuming tbe direction of the dipole oscillation to be alcag one of
the three axes; for each of these axcs this can be done witk two different
directions of propagatior of the optical wave. We thus obtair in the first
insiance six prizeipal indices of refraction, which depend on the condition
of polarization and on the direction s of the wave normal:

Oscillation 4 = 6,, Propagation along 2 : kpy, 7

.. ¥k vy
a=aq, z kg, vy
- - 21k 7
a=a, Tk v
- - - y:km’a‘

~y
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Herein lies 2 departure of the lattice from the actual crystl in which oniy
three principal indices of refraction are observed, and we will now con-
sider the origin of the six indices in a more direct way.

Let the dipole ampli:ude be in the direction of the x-axis. This leaves
us two difierent ways to dispose of the plane of constant dipole phase (see
Figure 1):

(1) The phase plane is the xy-plane (propagation along 2).

(2) The phase plane is the xz-plane (propagation along y). Or: account
of the non-equivalence of the v~ and z- directions in an orthorhombic lattice,

these two cases lead to two different exciting fields and there are in general

actually six principzl indices of refraction to distinguish
it is clear, however, without further calculation that the difference
between the two irdices of refraction Voo and Yy is very slight., For it
arises from the fact that a phase difference exists between the test dipole
and its neighbors - in one case the neighbor in the z-direction, in the other
case those along y. The phase difference between adjzcent dipoles being
very small anyway, because of the large wavelength of the optical field, any

effect produced by the inequality of the two phase differences will be ex~
tremely small.

It will therefore be suificieni henceforth to distinguish only the three
principal refractive indices Vs Vi U, which refer to the directions of
oscillation a,, q,, a, respectively. Their differences determine the bire-
fringence. The differences befween them are considerably greater than

those caused by the directions of wave propagation, because thev are nearly
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independent of the wavelength., Figure la shows the dipecies with their os-
cillations in the x-direction and Figure 1b the same lattice with the oscii-
lations in the y-direction. For an understanding of the physical significance
of the difference between ny and Vi (optical rotation power), see the con~
cluding portion of Section 4.

When comiputing the principal indices of rifraction (propagation along
one axis and oscillation along another axis), the three coordinate planes
of the lartice remain planes of symmetry and for this reason at the lattice
points the differential quotients IT' Xy " 14 . H‘yz = 0; and thus the deter-
minant reduces to the diagonal terms and one obtains from Egq. (102) the
equation for the determination of Vig

Q + (Al — T3, = 0. (13)

The index z is to remind one that the specialized formulas for propagation
along z must be used in order to find Vet In this equation the second
derivatives of the poteantial - as the approximations show ~ coniain only the
ratio k/ko = p, bnt not the frequency n which appears only in the electron
consiant €.

I one eliminates the electron constant 2, from Eq. (13) and the similar
equation for v vz

Q4+ Al - 1T,), =0 (13a)

on~. ¢Hains an implicit reiationship between the two principal indices of

r2,r ction Vs and vyz’ which does not depend on the frequency n; nor does
it depend on the number and characteristic constants of the dipoles; this

relationship

(A — I1'..), = (4" — II',).. (14)
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depends solely on the structure. In the casc of an orthorhombic lattice

B E this equation leads to a relationship previously found by T. H. Havelock
. 3 (see Section 4):
. Vz' -1 "‘y -1 - vODSt. Dry !

whose non-dependence on the wavelength Havelock found to be confirmed
' in some crystals. The calculation of IT',_ and I}, enables us to determine

the magnitude of the measure 4D of the structural birefringence for a
given axial ratio,

= 3. SOME GENERAL REMARKS ON PROCEDURE

e

a\:r.‘|l- ,&:- 1

(1) The summation of the individual potentials

S

ei(t.R—kS)-
L 1
&5 (15)

SRR T P
Dl Kl ‘H{y’ ‘e‘?, itk :

i

Ll

which is required in the previous section for the calculation of the optical
field as well as of the "exciting field," has no definite meaning for real
values ki, = n/c and k = n/q. Because of the oscillating factors in the
numerator, the decrease of the partial terms as 1/R is just about sufficient
to make pcssible a finite value of the sum; however, this value is indefinite
and dependent upon the manner of the execution of the summation because
the convergence of the series is "conditional", To arrive at an unequivocal
" result, ihe observations of the previous secticns have to be supplemented

> by summation instructions which have to be derived from the nature of the
physical problems,

To stari with, one is relieved of all difficulties of convergence by con-
sidering a finite piece of crystal which consists of a large number of di-
polesa N. When a light wave falls onto this crystal, the dipoles begin to
oscillate and creat: together with the incoming wave & . an electric field
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in the body. Thig, in turn, determines the manner of the oscillations, ¢
propagation velocity, ete.. as shown in the precediag sections.

In the finite body, this field depende cssentially on the boundaries, If
the surface on which the incidence uccurs is plane, the wave is refracted.
¥ it is undilating, diffraction spectira of different nrders develop and all of
the diffrection phenomera at the boundaries of the body are within the solu-
tion of this problem, The dependence on the surface extends throughout the
entire inside of the body.

Obviously, the meaning of the prcblem of disperaion is more restricted
than the proposed task: it is encugh to determine the propagation velocity of
a wave, that is, a2 materisl constant which is independent of outside condi~
tions (pboundaries). The very existence of this problem shows that the
essential process of wave preopagation at a point of the body is caused by
the environment of this point, Neither the boundaries nor the oufer wave
€, can influence this process - or else it would have to vary in the body
from place to place, The progress of a wave Inside of a body is & dynami-~
cally closed process wkich inherently has the capacity that when excited in
one part of the body, it can move on to other plares without the help of ex-
turoeal forces. The variely of the diffracticn phenomena of a bounded body
results because tke boundary initiates many iypes of ogcillations in the
body. These then continue *o develop in a "dynamically closed' manner.

I our aimn is, in the pure theory of dispersion, to find the "dynamically
closed' state of oscillation, then we have to eiiminate the influence of the
boundary. We must, because a maierial constant is involved, consider
only the influence of the environment at the place of the propagation. That
ithe environment should extend everywhere over maay wavelengths does not
enter into the question of convergence. The simplest way to proceed is to
return o the infinite erystal, but tO intrcduce instead of the everywhere
equally strong dipoie amplitude a a gradually diminishing amplitude at
distances fer irom the test point
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If x<1/A, this produces no change within many wavelengths from the
test point, However, it assures the determinancy of the problem and the
unconditional convergence cof the sum of the individual potentials., This
sum may now be written

—xl ikl —ik8 ik B —-ikN

e Y e
LT - 2% -
and is formally identical with the old sum except for the fact that
o=k +1ix

has the imaginary part x .

In the case of an absorbing crystal, for which one would have to as-
sume an amplitude growing exponentiaily in the direction opposite to that
of propagation (k= k1 + ikz) definite values of the sums can evidently only
be cbtained by assuming a value of & larger than k,. For x= k2 would
just compensate for the increase of dipole amplitude and reduce the sums
to the same indefiniteness as in the ncn-absorbing crystal and x =0 .

In the foilowing we re-introduce ip piace of k;) explicitly

by = kox + S hyn,

whersby k02(=x) > kZ » The result of the summation with this complex k..,
is one of the possible sum values with real kO' By executing the summation
with a complex value ané reducing its imaginary part {o zerc in the sum, a
value of the sum is obtained which is free of any influence of the bouadary.
(2) From the last statements, it should not be surprising that i the
forsgoing paragraphs no mention was mace of any wave (; incident from
the outside. The force which sfands on ithe righthaad side of the eguation
for the oscillations coptains only fields radiated by the other dipoles of the
body, not as with Planck and H.A. Lorentz, a term cor.esponding {o an
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incident wave. Such a term would contradict the interpretation of the wave
propagation as a "dynamically self-contained" phenomenon. The impos-
sibility of the existence of the primary wave & inside the body is evident
from the result of the summation of the individual fields: the assumed
dipole oscillations produce a field, which by itselif has the form of a plane
wave travelling with velocity q. K this field were to be superimposed on
the primary field & which has another direction and travels with another
velocity ¢, these fields would never combine within the body to form a
single plane wave,

According to the point of view in subparagraph (1), it is clear ihat the
absence of &, must be due to an effect of the boundary. The plane boundary
of a body fuifills the functions of

a, compensating the incident wave everywhere in the interior of the
pody;

b. initiating the "dynamically seii-contzined' mode ~* propagation of
the refracted wave;

c. producing the reflected wave in outer space.

A forceful proof for the required effect of the boundary may be obtained
from considering a ray of limited cross secticn falling under an angie on a
plane boundary (Figure 2). But for the fact that the exposed part of the
boundary produces a plane wave of equai direction and phase velocity, but
orpusile phase, as the incident wave, there would have to exist an optical
ficld also in the region between the dashed lines of the figure.
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4. RELATIONSHIP TO OTHER THEOQRIES

This work comes closest to the dispersion theory of Lorentz and
Planck. The main difference is that in their treatment of the isotropic
body, average values are used wheress in this paper strict consideration
of the geometric location of the dipoles is emploved.

One further difference of the basic assumptions has alreaay been men-
tioned above; namely, that we omit the incident wave §, . It remains to
say, however, that tle results of the above mentioned theories are con-
firmed in this paper when the results are specialized for 2 cubic 2rystal.

In computing the birefringence, this work exceeds the aims ¢ the above
mentioned theories and is closely connected with a group of papers by
Lord I‘.ayleigh(l), T. Ihvelock(z), and N, Kasterin(s). These papers start
out from Rayleigh's investigation of the properties of 2 medium in which
obstacles in the form of small spheres of different dielectric constant are
imbedded in a lattice arrangemenis. Only the static problem oi finding the
potential distritution is treated. On this basis Havelock uses the dielectric
constant for the composite medium and assumes that it varies with wave-
length in accordance with Cauchy's formula. This gives hin a dispersion
formula,

Kasterin, however, has succeeded with 2 method similar to those
used by Rayleigh to find 2 solution for the wave equation 4u + k2u =20
which fulfills the boundary .ondition on the surfaces of the spheres and
which represents plane waves. It is a pity that this excellent piece of work
has only been applied to acoustics problems.

The connection between Kasterin's work and the present study is based
upon the remark(4), that the way a plane wave is afiected by a small

{1) Lord Rayleigh (1892) Phil, Mag. 34.

(2) Havelock, T.H. (1906) Proc. Roy. Soc. London ZE_:HO.

{3) N. Kasterin, Lorentz-Jubelband, or Versl. Acad. Wetensch.
Amsterdam 460:1897-1898,

(4) See P. Debye, Der Lichtdruck auf Kugeln, diss. p. 50.
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spherical obstacle can be replaced in the first approximation by super-
position of a dipole spherical wave issuing from the obstacle.

f1. a second paper, Havelock(l) has approached birefringence with an
idea cccurring in Planck's theory, namely that in isotropic bodies there
exists around each test dipole a spherical cavity such that the molecules
lying within it do not on the average excite the test dipole in the middie of
the cavity. According to Havelock, there exists in a crystal an ellipsoid
of similar properties. The birefringence can ihen be expressed by its
eccentricity, but it is not connected to measurable quantities. Havelock
finds in his work, the relationship D, (Section 2), between the principal
refractive indices which should be independent of the wavelength.

Langevin(z) comes to the same result by assuming that each molecule
is anisotropic. Thus, if it is throught of as being isolatecd in space, it is
assumed to have three different eigen-frequencies. We shall show in
Section 9 that the qualitative resuit of the assumption of an anisotropic
molecule must be the same as that resulting from the assumption of a 1a%-
tice structure.
NOTE: Since the first publication of this paper (thesis), the same problem
has also been treated by Max Bern in his "Dynamik der Kristallgitter!
(Teubner, 1915). Born's mathematical method follows closely the presen-
tation which Hilbert gave of the same subject in his lectures on optics in
1913. In these a consistent mathematical development of potertials ac-
cording to powers of the small quantities &.k, e, 8,7 etc., is carried out.
Born has treated the problem in a very general form, namely for nor-~
orthogonxl latiices containing different sorts of electrons or ions. He aiso
assumes that the charges are not bound elastically to fixed lattice points,
but only to one another, and that therefore mechanical oscillations occur
simultaneously with electrical ones. The case treated in my thesis can be
derived from Born's equations by assumirg an orthorhombic lattice in
which all simple lattices from which it is built have infinite mass except

one. The one remaining type of charge oscillates then as though it were
bound to fixed lattice points.

{1) Eavelock, T. (1907) Proc. Roy. Soc. London ';83:28.

(2) Langevin, P. (1910) Sur 1:s biréfringences électrique et
magnétique, Le Radiwn 7.
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The couclusicns which Born him=21f has drawn from Lis presentation ex-
ceed considerably my work $n one point; nemely in the expiznation of the
optical rotation. If 2 beam propagates in the direction of the optical axis,
then the polarization direction and the velocity are in the first approxima-
tion independent of each other. Only in second order approximation -
which would yleld in our presentation che difference between vy and vy, -
can one find the anticipated reiationship which can, ss is well known, be
expressed thus: Twe circular peiarized beams of opposite sense propagaie
with different velocities,

Born does not furnish numerical calculations which would show what part
of the birefringence results from the influence of the lattice arrangement
and what part from the bonding.

For the present paper, I have taken from Hilbert's lectures the idea of the
consistent development in series of k,, efc., at that point where agreement
of the dispersion formula with the Lorentz-Planck dispersicn formula is
to be shown in the special case of a cubic lattice. (Section 9).

5. MATHEMATICAL PREPARATIONS

To accomplish the smmmation of the individual potentials, two
representations of
iR

e

—

F3

prove to be particoiarly suitable, since they do not contain the irrational
value R = (x2 ’-‘}’2 + 22)1/2. but the first or second powers of the coordi-
pates, We speak of one of these o the single, of the other as the triple
integral.

3.1 The Single Integral

Letthevaluekzlieinthe complex plape within the angle 2¢ to the
real axis.
Then

»
_.3+_
fe “de, (16)
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convergez when ¢ is so behaved thzt for its small values e !g) < 0, and
for iarge values Re(e¥) >0 . This is, for example, the case when € runs
ou! from the crigin within the sector - z/4 + ¢ and - 2/4 and continues in a
straight line to infinity.

The valuz of the integral may easily be determined (see Riemann-
Weber, d. part. Dgl. d. math, Physik I, 5th Edition, p. £3):

i
- —
fe ed£=ée+2ik- (1"3
By putting £ = R-n, the path of integradon remains essentially imnchanged
and we have
» 1
-y = Va 2it
AP £33
fe dyg = T B

Finally by writing (1/2k R instead of k, we oblain the single integral

- o4
ellR - if¢~’a+‘—t.de (1&
Vag )

Fy

whose path can be deformed sc as to coincide with the positive real axis,
except rear the origin, where it has {v lie within the angle 6. (See Figure 3;.

P b
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E £ 5.2 Tue Trigle Integral
E In order to obtain 2 representatior in which the exponent of e is 2
g linear function of x, 7, 2z, the simplest way is to transform the singie
E integral representation Eq. (19) as follows:
E We have
% : +o0 } 3¢ +m 1 :
3 - =il {0 dize —
! fc e dl-c“"’fe (3’ )di.-=2ee“""-}'z. (19
s - -
We substitute in Eg. (18) in place of ¢-=¢ the integral over A standing

on the left hard side of this equation and similarly for £-¥ apd -7
analogous integrals over the variables pand v, Thos we obtzin the

eitﬁ‘-i.( 1 )3
; : R V; :2V;l [20)
2 _F-:—.:*«r"_'uz*',é_" o B L3 b
E 3 ffffe o “Ydidudre3de

The order of infegrations may be charged and the integration over ¢

performed first:
2 Paolle gy -
- 4 -3 = ___j_____ N
f’ e E-D-p-» (21)

o

This leaves the triple integral standing

Al

3 1 3 a“'" -
== h’fff'k‘}"*" gy g (23

4

which integral has the desired very suitable form for summation.
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It is seen that the substitution -2, ..in place of +2, .. changes nothing
but the sign of the exponent. Furthermore, if R is the distance of the point
xyz from the point XYZ, rather than from the origin, the generalized in-
tegral is valid

eitk 1 r Tt ialY — g diniZ didpd>
Tl a Poi-p-s -

Finally it should be noted that it is possible fo shift the integration path
from the real axes provided that the condition

B2 —pur—r=0
is avoided. In patticular, if the sositive imaginary part of k is nonzerc,

identical integration paths a short distance abeve the real axis may be em-
ployed for the three variables. (That is, between the axis and the point K.

6. THE TOTAL POTENTIAL AND THE OPTICAL FIELD

In order tc obtain the total potential of the orthohombic point lattice,
we first make use of the triple integral {Section 5, Eq. {Z3)] and sum

iGE-LS —ik8 UL~ 2 p (T =32 iv{E~2)
: == . : 24)
B T Tgat fff I L d).dpd”

The coordirates of the lattice points are:
X=2al, Y=2bm, Z=2cn,

where {, m, n take on al] integral positive and cegative values. (a, b, ©)
are the half distances between neighboring points on the crystal axes and,
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at the same time, the spacings of adjacent planes of symmetry in the

crystal, ko is the propagation constant of the individual spherical wave,
k that of the dipole phase. We write

kS = k (X cos(S, z) + ¥ co0s(S, y) + Z cos(S, z))

RIS KU RH AN b ke s SR

=aX +pY +yZ; (25)

whereby
a® + f - yr =R (25a)
: The total potential then is
: -—80.. 48

: 1 2igli+l—-ajs 2idmis g — fen{$y—

{ H‘—z—n'z fff‘-l Htl—-ej+2ibmizu—f) 42 + . (26)

L,m,n )
e FilzTipyFivs didudr

E- l’,’—l’-—p‘—-r'.

We carry out the summation under the iniegyal. The triple sum is then the
product of three linear geometric series of which the first is

+m

E’ gliel(2L-a)Filz

Convergence of this sum for positive and negative values of £ can be
achieved thanks to the uncertainty of the sign of A, provided that the im-~
a.gimrypaxtkozisgreahzrthankz(seeSection:i). For if this is so, we
can let A run on a line parallel to the real axis and above ¢, similarly for
u and v with imaginary parts greater than those of 8 and v respectively.
- Thus +X ~a has a positive imaginary part which insures that the sum con-

verges for positive values of . The sum over negative { converges when
we reverse the sign of A ,
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*Cne finds the proof in the thesis note 1.
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The summation over £ therefore yields

4 3 —‘ﬁ) :—N
Z'(',, oo D gliatd-a-its g4 Z',-zuz(u.)ux:
“ “ =
e—i&z ’+€4u+2{¢(1+ )
= aaw Lrps I e
—-idz(y _ ia(d+a) s+ el +a)fy _ 2is{d-—-a)
=0 (1—e Y (1 - o3 ) 270

1+ 6387 _ 2c082aa0’*?

- .-ll(s-'r-?c) - .—ils+2‘cc + Jdde+2{ae .(l(z{»?q)

Scosdai —~ cwac

.sind(z + 2a) — ¢*'** gin iz
—1 .
ec.2al—-ocnlaa

Appropriately performing the suminations over m andG n, the Totel Potential

AL RN NI S Seniy breiiatiod

thus i3

o S [[[eind@+30)-e*!" sinlz siuply+3b) - ¢?**Seinpy
1=~52JJJ

cos 2al — cos 2w cos Lhu — cos 388 /28)
‘n r
 sarix+ 26, — 637 ginye . didudy
cos Syc— 008 3¢y [Py D e

where the intagration paths for (A pv) are lines parallel to the real axes,
and lying above (aBv), respectively. (Path 1, Figure 4).

A -Plane
x o ‘o
e Vg , ~pa— --_Jﬁi_.o--.(ﬂ
-o_-.i_o_ ..... L \«ﬂ-_-o~-_;u-9_-__(2)
Figure 4
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Let us remove a part of tke integrand. We write in the A~integral

tni(z + 2a) — ¢%**“siniz
coalagli-—coslas

sinizeos“ai + cosizsin2al - e3'*%sialz
=3
cos2ai — coslaa

cosizsin8ai —-ssinizxsinBaa
cos2al—coslaa

= sindz -4

Here the first term, sin Ax, has lost the denominator and with it a pole of
the integrand., For this part of the integral we can then shift the path of A
to the real axis. Because sin Xx is an odd function and k- 2%~ i£ -7 1s
an even function of A, the integral is zero. The same is true for the pro-
posed integrations over 1 and v . The integral then is:

‘s

cos2ai—cos2a«a

didpdr (29)
".08_1!_“8_ »?

= — i fffcoslztin%al—ilinlmsin2aa
2ns

I is easy to convert this integral into a sum built up from the residues
at the poles of the integration. The poles for the A-integration are.given
by

cos 2ai, mcos 2ae, 2°=-!3%3-

?

where £ is a positive or negative integer. In the A~plane the poles lie on

the two parallels to the real axis which go through the point ta . (Figure 4).
The integrand is an odd function of A. Then by the substitution

A = -, the horizontal original path (1) is replaced by path (2) which lies

symmetrically tc (1) below the lower row of poles and is traversed from

400 to -0, Adding a factor 1/2 for integration in each variable, we may

use the path (1) + (2), thus obtaining
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The path (1) + (2) is a path closed at infinity which can be contracted to
circulation of the row of poles, the circulation occurring in the negative
sense,

The residue at one cf the poles k = ({1 7+ aa)/a is obtained by develop-
ment of the integrand denominator in terms of (A - 7\0)

cosl,zxcinai, — iain/l.xsin 2a0
—2asia2al, (i~ 1) +.

= 1_111’ j: (OUSLoS—tlln 2ae- 'in;fa) + ...

1 -1 sin2aa
B-i—_—l"’ %a (003};01—13:“1.1 m)+...
Ix+ au
1 -1 ;‘_:_..
=i-% %s Foeen

where the uppe- signs refer to the poles of the upper set and convers-ly.
The sum of all residues which result from the integration over A is

A% ¥ ae Am~—ce
+e0 —i——x + - '

’ -2 o N :
241_” ke 51— {l1+aa) 2 (ls—aa)l

s

LSNP DU
oo kl—u'—-— =

or since the secoud sum 18 identical witk the first, (differing only by
having ~f in place of £ for the summation index):

“lxd»cc
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By the same procedure regarding the othex integrations we obtain the total

potentisl:
o peo  iliter mmaM, ato,
T W e
g o _[fatac) (mathin ’_,".‘."+'.-‘1)' (30)
Lwn X "'\ a | [~ .

This series which is equivalent to the grals Egs, (28) and (29) is a
precise description of the elsctromagnetic vector potential whizh resalts

from the superposition of the spherical waves,

By placing the factor

e —i(ez+ By +78) on ¢ -ike

before the summation sign, the potential has the form
H--—.—fz;--c“"‘-E: (3%a)

where the remajining sum 2 is a periodic function (Fourier series) with
the development range +a, +b, +c. The factor ¢ "8 gitters from the
factor for the dipole phase only therein, that in place of the discontinuous
varieble S (the coordinate of a dipole) the continuous coordinate 8 is sub-
stituled.

In order to obtain a clear picture of the potential given by Eq. (303),
one must keep in mind, that the development range of the periodic fimction
is extremely zmall in comparison with the disiance that the factor e 55
requires for a full period, The distancc between the atoms in the body are
of the order of 1().8 cm while a light wave, even in strongly refractive
waterial, is not smaller than 10™° cm. There are thus 100 ~ 1000 atoms
to a light wave length,
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The factor & 5 thus hardly changes within an elementary paralle-
piped. In order to visualize Eq. (302) we have primarily to think of a
periodic function of very complicated character repeating around each atom.
After that, proceeding from atom to atom, we have to modify the ampli-
tude of the function according to the modulation given by the slowly changing

factor,
For the optical wave, roughness and spikes of the microscopic field

are immaterial and the periodic function, in its repetition from atom to
atom, contributes only by its average value. This is given by the constant

term 000 of the Fourier series, namely

H-F

Therefore the potential of the optical field is:

=3 .2 —ik 1 .
alfwmg-gZe-its @31)

Pogp

completed by the time factor e 44 gescribes a plane wave in the direc-
tion -5 whose exponent contains k as the wave constant and not k, as do the
individual spherical waves. Accordingly, the optical potential satisfies
the wave equation

ann <+ k’ﬁ = 0.
The wave constant k¥, which was originally 2ssumed, and the ratio

y = —

&

have to be determined from the "dynamic equilibrium condition" (Eq. 10,
Section 2).
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The factor (ko?' - kz) 1 Geterraines the amplitude a of the oscillating
electrons for a given intensity of the observed optica! wave., For small
values of (k0 ~ k), namely when the index of refraction is not far from one,
the amplitudes are particularly small, This is fundamentally the reverse
of the statement, that slightly resonating eiectrons have only a small in-
fluence on the index of refraction.

SECOND SUMMATION: EXCITATION FIELD

The form of the total potential as derived in the previous paragraphs,
shows clearly the origin of the optical field. In particular, it was easy to
see that the total potential has ihe same phase eiks at all lattice points as
that of the dipoles. This means that in the calculation of dipole oscillation
(Eq. 10, Section 2) we may restrict ourselves to the dipole at the origin.
For it we have to find the excitation potential, or rather its second deriva-
tive, which by means of the determinant (Eq. 11, Section 2), determines
the phase constant k.

It is not possible to separate the effect of the test dipole 060 from the
sum Eq. (30) of the previous paragraph. This is due to the fact that the
sum becomes infinite for x =y = z = 0 by non-uniform convergence. The
contribution which has to be subtracted, R—l eikoR * diverges in an entirely
different manner. It is not possible to combine both terms before they
become infinite. Furthermore, the form in which II appears does not allow
dou...e differentiation.

It is very fortunate, especially with r2gard to the numerical calcula-
tions, that the summation also may be performec with the help of the single
integral for the individual potential [Eq. ¢18), Section 5]. One obtains a
single integral over a product of theta furctions and exponenti>1 functions
and one can effectively perform the subtraction of the divergent terms from
the integrand so that in this calculation of the excitation potential, no in-
definite term « - « occurs. This is fundamentally the merit of the
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# -transformation theorem, by virtue of which each ¢ -function admits of
two entirely different developments. In one development, cach term can be
interpreted by us as the effect of a dipole, and therefore the contribution of
the test dipole to the cotal potential can be recognized and subtracted. In
the other development, the contributions cf the individual dipoles are com-
pletely mixed up and each term of the theta-expansion matches one of the
terms from which in the previous sections we have built up the total poten-
tial in the form of the triple sum. By suitable use of both descriptions, it
is not difficult to subtract the contribution of the test dipole, while retaining
the essential parts of the fields of the other dipoles.

We proceed from the integral Eq. (18), Section 5:

P 2 ~ L 7 .
= ?J‘ de'; (32)

in which we substitute a dimensionless variable & by setting

Py F ¥ x Bryis
- 2

= * =7 FJ ? {33)

where d is a length of the order of magnitude of a, b, ¢ which we will
choose later as the geometric mean of the lengths of these sides. Then

ShE -7 ‘,t(x—-:m»(r-r)'i-(t—:fh—
- ._.f de. (34)

Q)

The condition of Section 5, regarding the direction und2r which the path of
integration has to leave the origin is not affected by this transformation.
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We multiply by the dipole phase factor and sum: This gives for the total
potential

2ol— 24 Qbm — g +2ca—1H) ~2iaal—2ibfn~2icy us o
Zf « T e 89)

Lu s
The part of the exponent which is dependert on the summation index £ is

-oilpg (e’if—zma)z.

The simplest theta function (which is referred to also as Og or 8y }
admits of the following series expansion:

+ o
Fojir)ae Se—=rr~2xitr, (36)
By interchanging the sequence cf summation ard integration, we have there-

for in £q. (35) before us

and the total potential is

H-—ﬁ?(

.t’(cf+ieza’ii%é‘)'e—ra?7d‘-

=i 0 (4 i)

(3D
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i we desire to drop the dipole 000 from the stmmation, we emit the 000
ter:: and we obiain the excitation potential:

lf P
HER O I el “de. (38

In order to perform ihe integr.tion, we uiilize the series expansion oi
# . The original series Zq. {36) converges quickly when ¢ is large; we
obtair 2 ucehid expansior for small ¢ through the & ~irzasformation
for.rnula(l)'

(39
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By means of the "transformed! and the "original” series, the following in—
tegrals for II are produced:

(Y e (£ ) et oS

= (£0)

a1 e EY .} -2iReer 2 e X
B e

The integrands are identicaliy equal for each value of z. We will abbreviate
the exponents in the first and second integral as I apd I respectively. Tken
the derivatives are:

{1) See for example, A. Krazer, Lehrbuch der Thetafurktionen,
p. 96, Teubner.
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WemnstnwsubtmctfmmHﬁthesecondderivaﬁvewithmspedtoxof
the individual potential of the tesi dipole at the origin. For this purposs,
wediﬁdetl:eintegraﬁoaforﬁvinwmnaﬁs: from 0 t0 E and from E
to = . The crossover place E remazins at present indeterminate. On the
first part of the path we use the series with the exponent I, on the second,
the series with II. The guantity to be subtracted is [see Eq. (34), this
Section }:

iNE 1 2 —res X .
imF T (e T 9
i

Again, we divide this integral in two paris at the cressover point E , and
find that the integral from E 1o = is identical with the term 000 of the

second half of Hn. The subiraction car therefore be achieved by putting
an accenl oa the sum sign in order to ndicate that the term GO0 has to bs
omitted. H we simultaneously take the valee at x=y =z = P = 0 we obtain

* As published, due {o typographical error, the 12st power within the
breckets was given as 8,
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where the exporents at thke origin are:

d b x?
Le—Z{is+9) +}+ 5
I =—xa{pZ+. .} -2ifaat..0+ 5.
Inl](l)tbegeneralsun term may easily te integrated when one takes into
consideration that & de~-—d(1/ez) The indefinite invegral produces no

contributior at €= Obeansecfthedxrechono—*thedepax'mrefmm;he
zero point; there remains the value 2t the upper limit E and one has:

£,4, B G a IR e

=2 ( 8
o= > T
2abe s £+ - 45
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Here onpe sees plainly the reiation to the total potential in the form of
Secticn 6. For & =w, H’ngoesc;ver irto the (formaslly) differentiated
total potential Eq. (30}, Section 6, taken at the origin and diminished by the
{likewise infinite) test dipelz erm. T E is, however, giver 2 Snite vaive,
then all the terms are Snite beceuse the infinite effect of the test dipole
has been taken out of 3(2’




Through a similar calculation the followirg is obtained:

3
H
3

o, =m0+ 0o

=y
T (et (mtetd). S5 o
n 2 a = b =/
2abe x.’—n(li+£,+
a =xaj 7 (46)
§ s %
s IFQ-%%”- ' lom-gtodide.
E
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In contrast to Hg), there exists no term in II%,) which corresponds to the

: single potential to be subtracted. The reason for this is that in the dif~

ferentiation of Eq. (34) with respect to x and y no term appears which be- 3

E: comes infinite independently of the direction. In spite of the factor £- m

3 the accent on the sum in Hg,) may not be omiited, because the integral

: over the term £ = m = n = 0 diverges.

5 The series Eq. (45) for H(:;): and (44) for Hg give the necessary data

for the calcalation of the principal indices of refraction inasmuch as it is

E - possible to find them without the use of approximations. In the following
sections, we shall make use of the simplifications resulting from the actual
‘ orders of magnitude in the case of propagation of visible light in solid

: bodies.

8. APPROXIMATIONS DUE TO THE SMALLNESS OF «, x,.

Equations (42) and (43) established in Section 7 for the derivatives cf
= T the excitation potential at the place of ihe dipole 000 can be considerabiy
- simplified when X, % and d.@, d.8, d.y are small numbers. This is i
= . always the case when visible light in solid materizl is treated, due to the t
; fact that d is of the same order as the interatomic distances and |
" ko, k, @, B, ¥ are of the order of 1/A, As already mentioned, the ratio

Jakl

oreatn o
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of d/A is of the order of 1/100 to /1000 and the above quantities are of the
sanie order,

Under these ¢ rcwnstances, terms such as da/7 occurring in the series
Eqgs. (4%) and (¢9) Secticn 7, play a role only when £ =m=n=0,.

We omit, therefore, in all terms of the series, thz small values after
having segregated th= tcrm 000. This term is in H%{ according to Eq. (14),

-

Section T:

nt  ddat ! .7 »* coe® (S, z)
2abe nd xS-x* 2abe 1=

where ¥ =[x, isthe index of refraction. The term is therefore of the
order of magnitude 1 in comparison to x¥,
Because of the smalincss of v, the integral appearing in Eq. (45) of

-

the prec~ >~ ~ gection

e &ds
({7}

P
has an integrand which differs appy>ciably from ¢~ only where the integrand
is very small anyhow. We commit an error at most of the order %,
whea we replace this int2gral with one indepe Jeri of x4 :

E
dds = -E-.
3
)

Atter these steps, the first cart of the excitation potential bccomes

TT0) e T (_::_coga(s,,)+1p(x))

=8 Sabe \ 1ot ez}’
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where in this approximation r[/gz depends neither on ¥ and %, nor on the
direction of propagation of the wave, but only ona, b, and c.

Similar considerations are applied to H(}i Eq. (44), Section ¢, Also
here the small quantities of the order of x»® can be disregarded in the
exponent of the e-function wherever they stand next to terms of the order
of magnitude 1. Only for the torm 000 would this not be the case; but this
term is excluded because of the accent. Thus II (}2 becomes entirely in-
dependent of the small quantities, We write in this approximation

2 hid {
0= s ¥

2abe 2=
. o e . (1) (2)
and obtain altogether for the excitation potential, after settingy +v =y :
, »
o, =5 (5 o0 (5,9 + wa) 47)
and similarly
T = -"—(-—'-’— w8 (8, 2) cos (5, 3)) (48)
zy "~ Rwebe \ 1-»* ’ rJie

In U."y and analogous derivatives, it is evident that no term Yy 3PPERTS;

for this term would be independent of the direction of propagation and thus

would aiso exist in ;he case of propagation along one of the coordinate

axes. But we know from symmetry that in this case l'g{y = 0 (see above).
Finally, we have in this notation:

A7 = = (—1’——,-4- Atp)- 49

-Qab: 1—»
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9. THE DISPERSION FORMULA

In Section 2 we had to distinguish six cases of principal indices of re-
fraction, depending on the directions of the oscillation 2nd of the ray. But
we have previously suspected that pairs of these indices would 8o nearly
coincide, that their discrimination would be practically superfluous, Asa
matter of fact, we can now write down the equation for the propagatior of
the optical wave in the z direction with oscillation in the x direction:

Q4 (AT =TT Jampms = 4 o (22 4 Ay~ 9,) = 0

vk 2abe \l =~ » 2

and we find, that in this approximation, because of the independence of ¥
from the direction of the ray, the identical equation would be valid for vxy’
that is fora=vy=0, 3=k . We therefore omit the distinction between
Yoy and Vyg? and we write Vg for the principal index of refraction for dijole
oscillations parallel to the x axis.

Let v be the volume 8abc which contains one dipole; then for the index
of refraction we have the equation

]
- T':'Q +dw— Yse (50)

»? -1
or

vzial-{— ! .

L. - - 51
"Q'*'dv ¥z 1 ( )

We recall the signiticance of the electron constant 2 [Eq. (9),
Section 2]

M3 pd—ind).
-Q"e:("o n 1nmlg,

aer mmeecheT e
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For a transparent crystal we set the frictional coefficient g =0. Then
the cispersion formula is:

-

I 3 1
> : ”x = 1 + .
= 6w _om (52)
. e~ Yt - o
‘ x - l + 1 .
! B, — An"? 53)
j
l : s 27c
or, introducing the wavelength A = ik
% .
£ T .
v =2+ "B, —imc A (54)

We have here before us a dispersion formula with two constants, of tke

saw € type as those of H, A. Zorentz* and of Planck, The latter would be
in our terminology

1
3
§ v 1+ om 1 oom
; Ane ° 8 4ne

whereas Lorentz has -(1/3 + s) in place of -1/3 where s remains indeter-
minate., In all three formulas this term indicates the influence of thke di-
poles of the body on a test dipole. The term 1/3 arises from the contri-
butions of the more distant surroundings of the test dipole, where the di-

. poles may be spread out into a homogeneous medium. In Lorentz' terri s

; is added the strong but unpredictable influence that near neighbcr dipoles

: exert on the test dipole. For a cubic arrangement of neighboring molecules,

H. A. Lorentz proves that s = 0, so that in this case his formula becomes
identical with Planck’s.

*Cited undesr Section 4.
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Aiso from our equations specialized for a cubic lattice the term 1/3
is obtained. For in that case one has, by symmetry

l—dy +y,,=1=}4y. (59

But Ay can be determined in the following mamner: one develops the total
poiential Eq. (30), Section 6 in powers of k obtaining

I L. R S e

H—-— ,(k"_k"‘}‘[‘ ...+...J)

when only the lowest powers are written out.
In order to obtain the excitation potential,

ik R
R

1 .
-§~+‘h—-.-

should be subtracted from this, The term with kK © in the development of
I goes over unchanged in the development of II'. Thus one has

A= — k=22 (Lt ke +.)
(5 + e+ ..)
(T:'_,,-g- 14 [;...]).

'
«|F |7

By comparison with Eq. (49) Section 8 it follows that

de=1,

and thus from Eq. (55)
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Insofar as the isotropic body may be replaced by a cubic arrangement,
our formula thus entirely agrees with the Lorentz-Planck fcrmula,

Discussion of the dispersion formula thus obtained would add nothing
new regarding the dependence on the wavelength of tne indices of refrac-
tion and absorption than what has already been discussed by Planck.

Only those details which are produced through the anisotropy of
Eq. (52) shall be noted here:

(1) From two measurements of vy the quantities A and Bx [Eq. {53)]
can be computed, The quantities ¢ ure functions only of the latiice constants

a, b, c. Thus by using the value of a single principal index of refraction
at two cifferent wave lengths on2 can obtain the complete dispersion formula

not only for this index, but also for the two other principal indices of re-
fraction.

(2) The constant A, independent of which index of refraction would be
used in its determination should have the value v/47.m/ e which is
characteristic for the lattice. The same value of A should therefore be
found, no matter f:om which principal index of refraction it is obtained.

Bt nne finds this relationship not fulfilled. For example for anbydrite,
{anhydrous czlcium sulphate)

)

A, = 1.6125-107%%;  {; = 1.6726-107%%; 4, = 1.5501-107%,

values which deviate by 8 percent.

One of the reasons for this deviation is the fact that the electrons
having the proper frequency n, do not form the simple Bravais lattice that
has been presupposed here. A second reason is that in addition to the
electrons with the characteristic frequency n, others with different eigen
frequencies and possibly ions with eigen {requencies in the infrared are
contained in the -:rystal.

The two-constant Eq. (52) is then to be understood as an appro:;imation
to a formula of complicated structure and the constant A of the dispersion

formvla conse quently loses its simple meaning and can vary with the
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direction of the propagation of the wave or of the polarization. In this

b is relevant: if in calcite incidence

connection the observation of Drude
is at right angles to the optical axis, the ordinary ray involved apparently
five electrons, and the extraordinary ray two electrons per molecule.

{3) From Eq. (52 it follows immediately that the effect of the lattice

arrangement can be interpreted also as ar anisotropic bonding of the

electrons in the molecules. The variatiop in the formula of dispersion in

passing from vy to Vy’ or from e to L-yy, respectively can be replaced,
as Eq. (52) shows, for all wavelengths by a suitable modification of the
eigen freguency n, . Located within the lattice, a dipole, whica in itsel: is
bound isotropically, acquires through the influence of the structure three
1ifferent eigen trequencies. The two views, namely attributing the origin
of birefringence either to the inherent anisotropy of the ultimate particles,
or to the anisotropic arrangement of isotropic particles, thus cannot differ
in their qualitative consequences.

10. THE EGQUATION OF THF NORMAL SURFACE

We have dealt up to now exclusively with the principal indices of re-
fraction, six of which we had to distinguish originally. With neglect of the
terms of the order (a/k)zwe recognized that indices referring to the same
polarization are equal to each other, This made the properties of the lat-
tice equal to those of a bi-axial crystal.

The question is whether this equivalence is true for all directions, that
is, whether the relationship between the direction of the wave normal $ and
the index of refraction, which is contained in the detesminant (Eq. 11,

Section 2), is the same as in the orthorhombic crystal.

Retaining the same degree of accuracy, we introduce the values of
Egs. (47), (48), and (49) from Section 8 in the first line of the determinant.

{1, Ann. d. Phys. 14:691, 1904,
e ettt NP\
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This line becomes

E § S - !
Dt g (i (1= eos' (n.2) + dw—w);

S

I »? - *

4 r
— — ——, '_c '} (3 ,\' — ————— ———— ! E’ g
Zobe T3 C08is7)cos s,y Tage ¢ Cosis.xicos sr .

We introduce the abbreviations:

- »e .
N= =5 S0s(s,z}=cosl...

1
and
2abe »? .
=Rt dy—y, = =B,

Thus the determinant reads:

Nsin?1 - N, — Ncoslcos? —.\'cosleos8l
— Ncosleos2  Nsin®2 — N, — N cos2 cos §
— Ncoslcos8 ~ N cos2cos$ N sin?8— N,

=0.

We write in the diagonal (1 - cosz. ..) In place of sin2. .. and take out
the factor which is non-zero except in trivial cases:

— N3cos?1 - cos?2 - cos?$

There remains

i N-XN,

’ (l = Ncos® l) 1 ! ,
N-NA,

I (1~ Fars) ! ! =0

{ N-N\ |

! 1 1 (] = Ncos’s) |




or, except for a factor:

N cost 1 N cost 2 Neosts
NN, +t—5=x t N-N, —1=0.

»

This equation is nothing other than that of the normal surface of a2 bi-axial
9 9

crystal. Replacing the 1 by cos™1 + cos™ 2 + 00523 and the N... by tkeir

e.pression in 1-, one cbtains the equation in its usual form:

¥, coa’ 1 »,3cos’ 2 »?cos*s 0
»—y,2 »—»? »—y? *

Thus we see, that a point lattice of the kind considered, behaves with
respect to all directions as a crystal and that from the s*ancoeint of optics
there is no objection to even the simplest lattice mode™ of a crystsl.

1i. THE BIREFRINGENCE D

Already the general considerations of Section 2 have indicated a
relationship between the priu~ipal indices of refraction, waich according
to Eq. (14) Section 2, is

(A=, ) = (41T —1II',),. (36)

The indices z on the parentheses indicate that on both sides of the
equation the potentials are those for the direction of propagation along z,
but that on the lefthand side, polarization is along x and the refractive
index is Vi while on the righthand side polarization is along y and the
refractive index is Ve

If we insert in this relationshi> the approximate values of Fgs. (47),
(48), and (49) from Section 8, there results

.pm{lw e
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o1 since A v is the same in both cases, we obtain

"! - "x

TorMioy = ¥es~ ¥y = Doy 67

¥y

The dimensionless quantity on the leit, which was recognized already by
T.H. davelock as independent of the wavelength, we find dependent only on
the ratios a:b:c of the laftice periods. We call it the measure of structural

birefringence.

Through the series Section 7, we are in position to compute these
constants for arbitrary ratios a:b:c. For a suitably chosen crossover
point E, the series converge rapidly enough to make the numerical calcula-
tion easy.

But at present it is not yet premising to undertake the calculation for 2
known crystal in the hope of find'ng agreement between calculated 2nd ob-
served values. None of the crystals whose structure is known up to now
{Fall 1915) has a structure so simple that one could assume with some
measure of certainty that a single kind of electron is adequate to render
its optical properties.

The numericz1 computation and the extension of the theory to more com-
plicated spice lattices shall therefore be omitted here.

Only in order to give a general idea about the expected order of the
magnitude of the effects, we take for the calculation the ratios
a:b:c=0.893%2 : 1 : 1. 008 which are the same as those of anhydrite. Cal-
culatior leads to

D, =0.11848 D_ =017983 D 000133,

whereas the observed values for the same material are:

[ R L L
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D;. = 005145 D,, = 0605925 D,,= 000854

From this it may be concluded that the anisotropic arrsngement alone is
sufficient for explaining the order of magnitude of the observed birefringence.

That the simple assumptions concerning the space lattice do not suffice
for rendering the phenomena, is slso indicated by the fact that the observed
values of D are fourd independent of the wavelength only to 2 moderate
extent. Thus in quartz the variation of D between the lines C and E of the
spectrum is 15 times smaller than the variation of the double refraction
(v -¢) in the custcmary sense. In most crystals the variation of D is
some 3 to 6 times smaller than that of the usual birefringenca, but there are
crystals for which I varies more than the birefringence.

Whether the constancy of I could be valid for arbitrarily complex point
systems constructed of one nd of electrons may remain undecided. Cer-
tainly it is not valid for complex point systems with different sorts of ions,
since it is not possible to eliminate the two or more electron constants Qi
from the two dispersion equations for Vg and Ve .

Unfortunately no similar simple relationship for two sorts of electrons
or ions could be found beiween the three principal indices of refraction,
which would be valid regardless of wavelength.
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Part il. Theory of Reflection and Refraction*

I. INTRODUCTION

1.1 Problem

Let the upper hali space be filled with a lattice of dipoles with the co-
oxrdinates

X =2¢l; "= 2bm; Z=2cn, (58

where £, m, n are integers and £, m assume all positive and negative values,
while n assumes only positive values (including 0). Further let a plane
wave be incident on the lattice from below and let its wave normal have the
direction Sg (see Figure 1). Its periodic fumction is

e—iu (l— —':-)

(59)

Find the mode of oscillation of the lattice and the thereby created
optical field,

* Continuation of the work by the same title in Ann, d. Phys. 49:1-38,
1916, quoted as Part L -




1.2 Procedure of Computation

A procedure which appears to hold little promise wovld be to write
down methodically the excitation equations for all dipoles and to solve them
beginning with those at the boundary. The force terms appearing on the
right hand side of these equations would themselves depend on all of the
dipole oscillations and at that, in a most complicated manner, Consequently
the computation of the force without previous knowledge of the dipole oscil-
lations is by no means practical.

Another method of sclution exists in making a suitable assumption for
the dipole oscillations. We can then actually sum the electric forces and
satisfy ourselves that the dynamic conditions are fuifilled for the assumed
mode of oscillations.

‘therefore, the assumption is made here that in the crystal, up to the
very boundary, there exist planes of equal dipole phase. In the imbounded
crystal such an assumption leads to the propagation of a plane optical wave.
Let the wave normal of this dipole wave be s, and its velocity q.

Then the summation oi ..e spherical waves issuing from the dipoles
does not yield, as in the case of the unbounded crystal, only the fieid of a
piane wave, which propagates in the same marnner (velocity q, direction s},
as the dipole phase. Rather, there occurs besides this field inside the
crysiai, a plane wave with the velocity ¢ whose directior of propuiativa &y
is related to s by the law of refraction. Moreover, in ouisiCe space, a
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wave comes into existence which is a mirror image with regard to the sur-
face of the last-men*ioned internal wave and it has likewise the velocity c.
The outside wave is the reflected wave. The first inside wave (¢) is the
refracted wave. The wave on the inside of velocity c is the one which is
required by dispersion theory in order to cancel the incident wave., It
begins with full strength at the boundary and can therefore compensate the
incident wave N throughout the interior of the crystal. (It is called for
short, the internal boundary wave.)

This result already offers the solution of the dynamical conditions for
the dipole oscillations, For when this same boundary wave and the incident
wave cancel each other inside the crystal, then only the same field remains
inside the bounded crystal as in the unbounded crystal, and we only have to
see to it that the assumed dipole osciliations are compatible with this field.
This is accomplished when the propagation velocity of the refracted wave
has the correct value, as was shown in the dispersion thecry.

Amplitude and phase of the internal boundary wave are determined by
the requirement that the incident wave be cancelled. Since the three waves
which are generaied by the dipole oscillations show definite amplitude anc
phase relationships, the amplitudes and phases of the reflected and re-
fracted waves are also cetermined by this condition cf cancellation. The
resulting relationship between the amplitudes of the three waves must be
that given by the Fresnel formulas provided that the correct transition is
made from the microsccpic field to the phenomenological Maxwell field.

iel it ve said at cuce that we restrict our thinking to the case of a
cubic crystal which is thus alsc opt-caiiy isotropic. In this way complica-
tions wiil be avoided, which woutd oniy detract Srom: the essentials of the
theory. Notwithstanding this, we cistinguish in the formulas, the three
axis intercepis 3,5, ¢, which, if desirey, inmediately may be conzidered
ag equal,
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2. THE SUMMATION OF THE DIPOLE WAVES

As in the first part, Dispersion Theory, we employ the Hertz potential
of a dipole in the form of expression Eq. (23), Part I, Section 5, namely

with omission of the factor ea- e 1ot;

ol f 2=zt in¥-y tir(Z—8) dldudr _
= T3 ff gyt —B3—y Tt ('50)

(X, Y, Z) are the coordinates of the dipole, (x,y, z) those of the field point.
The variables A,u, v run parallel to the real axis between it and the point
kO’ (which, initially, is thought of as having a positive imaginary part)
(Figure 6).

Th+ potentials to be summed are:

. -iint-k,E-28)
a b ° (61

A-Plane

Yv°

Figure 6
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Here (in the terminology of Part I, Section 10)

kS==kecost - X + ke 7Y +Ekns8-2
=aX . BY +yZ (62)

This corresponds to a prugressive excitation along +s.

On performing; the summation under the integral sign in Eq. (60), the
threefold sum is decomposed into the product of three simple sums. Of
these, the first two whose indices £ and m run from - to +o, are identical
with the sums over £ and m which appear in the corresponding problem of
the unbounded crystal (see Part I, Section 6). Our present assumption
differs only insignificantly from that made there, namely in the signs of
,8,v. These are easily changed in the results of the summations. The
sum over f thus produces here in the integrand ke factor

. sin k{z+2a)—e""%% gin dr

—1 (63)

cos 2ai— cus 2ua

and similarly for the sum over m.

On the other hand, the summation over the index n extends only from
0 to o and we have:

A} i
S

9; - Dieyen ~ivs
e-xeav irz 4 -icy = p:: ; (64)
. j—e-iC'T~ y)
- 0 €
3 In order that the sum converge, v + Y must have a positive imaginary

part; that is, v must be conducted on a path above -7y . In the former
sums, as also in the unbounded crystal, it was required that A be led
above @, u above 8. The feasibility of this requirement provided the sums
are unconditionally convergent has been discussed in the thesis and has
beenattributedtothefactt}:atko has a larger imaginary part than has k.
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This assumption is also here necessary for the summation. In the result
we go without further discussion to real k, kO (see Part I, Section 3).
The total potential of the "half crystal" consequently becomes:

. -2iga ,
.1 [‘ sin L (x + 2a)—» sin Az
T~ 2atJ, cos 2ai — 198 2aa

. -2i38 .
Jsinp(y 28 e sin py -
cos 2bp — (08 267 (65)

PR dddudy
2ictr .1..:; /..l_z‘i:_ui_,t *
1—e ° :

From this description, which is valid for all +: .uus of (x,y, z) we pro-
ceed to a description of Il as a sum by reducing the {xre< integrations to
circulations of the poles of the integrand in the ccmplex plane and evaluating
these by residues. This entails o1 itself a distinction of mrer and outer
space with each containing different groups of waves.

The first two integrations over A and u are identical with those in the
expression Eq. (23), Part I, Section 6 for the potential of the v \bounded
crystal. They will be treated just as there. By utilizing the ia~t that the
integrand is an odd function of ilie variable, the path of Figure 6 can be
completed by one running below the real axis. The series of poles of the
integrand now lies between the two paths at the positions

lo=—i¢2. (66)

Residue development in the integral over £ yields the sum

+os e illx=—aeire

2asr ? z
2 (2= - 67
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and the same treatment is applied to the integration over u, (Compare
Part I, Section 6.)

By this transformation of the integrations over A and u the potential of
the bounded crystal becomes:

+ 00
a——"——
1 5 Y 5 Y . .
—_— e - }ra a=UBy b
I = T 1 mfe 7-na)s ilax=Utpy
T = o
o 6
e iv: d» ( )

. - ——

Zicer+ 11 i In—an\? ma—ho

1—e 3 T AL _ (_ A DI
a

\Y

This is a mixed form of the potential, inasmuch as two integral signs have

" been replaced by summation signs, while the third integration still re-

mains, This form shares with Eq. (65) the advantage that it is valid for
the entire space,
We now proceed to replace the iast integral also by a sum of residues.
To this end we observe that the integrand has two classes of poi-.s ac-
cording to whether the first or second denominator is zero.

/) 1 —eliclrd+n = (; r= -'1:— — 7 where n is an integer (65

This series of poles corresponds completely io the poles Eq. (6% in the

A 2nd p plane, at which the residucs were taken, The poles lie ca a straight
line paraliel to the real axis and below %, out above the point -::e. This
line thus is between the integraticn path for » and the point -kf} {Figure 7). *

b x 2_( {n—aeo \"_ (m:x—bp')’ =,

o a f &

that is += (70)
/, . jla—aa* {ma-i:d ;’

im = +‘I "' - ‘\ 17 , - { b

* The position of this line was stated incorrectly when published and
is corrected here,

** The words "that is™ have been supplied in translation in order to
clearly separate the two statements of Eq. (70}.
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Figure 7

By ~+ [/ we understand the value of the root which is situzted in the first
quadrant, These poles form a chain which sheathes the branch cut of the
root extending from ko to infinity*. With increasing £ and m the poles
become ever more imaginary.

(c) Also the other root value, thus under retention of the positive
sign for the principal value, the value

¥F¥= —¥im
——

causes the denomirator to varish.

Altogether: three lines of poles exist in the v plane as shown in
Figure 7.

The integration path for v runs, as mentioned, parallel to the :eal
axis between the pole series (a) and the series (b). This path can either
be deformed upwards and then coniracted about the pole series (b) with
circulation about each pole in the pogitive direction: or it cor be pulleg
downward, namely in case toat the irtegrand vanishes exponentially at

* Clearly this bSranch cut does not exist for the integration over v
since in the denomiritor only v2 appears.
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infinity in the lower half plane. In doing so it remains held by the pole
series (a) and (c), (both with negative circulazicn of the poles).
The condition for the upward deformation is that the factor

e—ivz

1— c‘.’ir\v +v

vanish at infinity in the upper half plane, thus
z2<0
This is fulfilled in all outer space.
The downward deformation on the other hand is permissible because

of the same factor, provided the denomipator becomes infinife more
rapidly than does the numerator. That is when

z24+2¢e>0

which is true in the entire inside space.
These limiis show that a domain exists at the boundary

—2c<z<0

in which both deformations a2re permitted. The brundary domain continues
the crysial beyond the cut off at z = 0 info outer space and establishes thus
the trapsition irom inzer io outer space.

We have now to obizin the residres.

2} Ouotside “pace = Negative: Pole Series ths

We have
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and thus the sum f {he residues:

11 at 2-6 —fila—aa)za-ilma-38)y/b—iv ¢
(71)
1 1
1—62“('1-+ 41 )

Yim

This is the potential I1 q Which is valid in the outer space. It is a double
sum, wherein each term appears to have the form of an ordinary plane
wave, In fact, this is true only for the term 00 given that for visible light
kg 3,7 are small compared with 1/a, 1/b, 1/c. For the same reason
a'! other terms for which v tm is positive imaginary represent inhomo-
geneous waves. (See, however, Section 7).

2.2 lInside Space. z + 2¢ Positive; Pole Series (a) And (c)

The residue at a pole of the series (a) is found by development of the
integrand in proximity to the pole. There

HII—CT
r= =
2 c
and pnearby
e“" e'i'::
[PEPLLL s —2irlr—r )+ ...

Because of the negative sense of circulation, the residue is multiplied by
the factor -2zi. The potential becomes — we designate it Hq:

Il = — z

Zabe
-xu:—sc.. S—stmz~bfig L—1? igx=—cy;ze (72"
222 1:-—.’.'.. 1Y fmx-32\* imz—cy\?
-} - —=
:'i i £ £ i (4
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Except for the already freguently mentioned change of the signs of a, 5, ¥
this is identical with the potential of the unbounded crystal. {See Part I,
Section 6, Eq. (30)].

Finally, as a second part of the inner potential, the double sum over
the pole series {c) is to be added; but for the sign of v tm and 2 further (-1)
because of the negative circulation this is equal tc the sum of the residues
at the poles (b):

ta
€~ 2ab

Qi —itlt—o: it =L b siv,_: s (72)
>12 e I—0l je—ife:x shdiv, = 1 . i
sy

~2iciy_—y3
1—c¢ iciy, ~¥ Yim

What has been s2id about the character of the sum Il is valid alzo for .
The total inner potential is obtained by adding together the two con-
stituents:

o,<m,+1. (79)

<

2.3 The Boundary Regicn, z Betweea @ And -2¢

In order to become familiar with th sums we may study the boundary
region in which both expressions Ha and ji, should be valid. Without going
back to the integrais and the deformation of their paths, it is easily shown
on the series themselves that both expressions are identical inside the
boundary zore.

To this end we assert

=1, 74a)

and have o prove that the ithreefold sum orn the right-hand side is equal to
the differesce of the double simrs.
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It is easily seen that the third summation, over n on the righ‘-hand
side has its origin in the Fourier development of the parts containing Ym
in the double sums of the left-hand side. In compazxing Eqs. (71), (72) and
(73) one sees that for z between 0 and -2¢ one should have: identically

1 l c—iv‘-z e+'.'hu‘ >

Yim \1 S R S L

- N e—uuulc\fxyz
— ) ——
¢ did ViR

(75)

The easiest way to prove this relationship is to prepare the sum on the
righthand side in the following way: Start with the development of ¢-i*: in
the interval 0 ... -2c which is

-~ —innjez ain yoed'’C
—_— (76)

. 1
—-ivE = . —
¢ e e y~naje

Bring the factor sin vc. e over to the other side; there remains a
development with coefficients

A =—"1

L) vm—nitfe

The coeificients of the series in Eq. (75) are

e

O oyei=aje—y  2na lv+y—naje ~v+y—naje

Therefore the value of the series in Eq. (75) is the difference of two
exponential functions:

G"‘ { e—ilv-{-y)ix{-c) e—i(-°7+yl(l+¢) }
2')- %\ EX/ sin (—»+7)e
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The righthand side of this equation, completed by a factor i/c is after some
easy manipulation equal to the lefthand side of Eq. (75). This shows the
identity of both developments, namely Eq. (71) and Eq. (72) + Eq. (73)
within the boundary region.

3. APPRONIMATIONS FOR OPTICAL WAVES

Before we proceed to satisfy the dynamic conditions at each dipole by
means of the incident optical wave, we will attempt to cbtain a survey of
the nature of the fields represznted by the potentials. There are two cases
to distinguish:

(1) Inthe case of optical waves, the quantity a/A, that is, the haif
distance of the lattice points measured in wavelengths, is a smail number

of the order of magnitude 1/100. In our equations this means that

k = n/q = 27/X and together with it kg, a, B,y are all small compared to 1/a.
(2) If an X-~ray goes through the lattice, the rigorous computation

based on the a:;;Eption Eq. (61) is valid as in case Eq. (58). This time,

however, ak is of the order of magnitude of 10, since the wavelength of

the usual X-rays (maximum IX) is more than 1000 times smaller than the

wavelength of light. This case will be treated in Section 7.

3.1 Optical Waves

3.1.1 THE INNER WAVE H .

ﬁ The potential H is already known from Part I, 1t is sufficient here to
i recall that it con’anns two facters, one of which has the form elk of a plane
wave which proceeds in the same manner as the dipole phase of the lattice,

The other factor is a threefold sum which describes in the manner of

Fourier a2 function which repeats from one elementary parallelepiped to
another. The optical field musi obviously be defined by an averaging process
in such a way that the variations of this rapidly changing constituent are

SRR 7 g




T T o co TR AR ST, WIS S R R R T L I E ST s T T A ST £ ST

|
.

eliminated, For this purpose, one integrates the second factor over a
parallelepiped thus obtaining an average potential

_l- — 0')"-___ -—._i'__ "5(01+ﬂy+rzi.__1_. {
['" 17,‘ Zale © kot —k3 (7D

To see how this is related to the macroscopic field strength, see Section 5.
3.1.2 THE INNER WAVE Hc -

The nature of the terms of this double sum is determined by the value
of

n= +1/ k2~ (ﬁ!_-_;a_ci T (mn—bﬁ): s

In the opticel case only the term (0, 0}

;: top = ’koz“‘@;:ﬂ—g}- (79}
can be real: Ail other terms are definitely imaginary. All terms of the

sum except for £ = m = @ represent inzomo;-meous waves, whose ampli-
tudes decrease in the z dircction according to the factor

eir'_:

The higher the indices, so much faster ‘s the decrease. ¥ we bave

vy, = VA= —lajb—4)F ~it[b (73a)
the factor becomes

2 e-x3bd

e — . - —————— -
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I we take the case of cubic lattice, where 2 = b = c it tavs oceurs that the
amplitude of the wave through the ficst dipole layer z = 0 has only

e 27 = 0, 0018 of its amplitude at the start z = -2¢ of th: beum lary ragion.
The same ratio of the amplitudes of the inhomogeneous wave holds between
the first and second dipole layers.

The rapid decrease of the inhomogeneous waves towards ihe inside
allows oxe to assume that they are of no importance for the essential
process of reflection and reifraction. They dc not noticeably infiuence the
dypamic condition of the latiice even in the outermost !3yer of atoms.
Besides the attenuation towards the interior, also the amplifude irself of
the inhomogeneous waves is of an entirely different crde: of inagnitude than
that of the bomogeneous waves, especially the homogeneous wave 00 of the
potential Il . For the term 09 the factor 1/v 1m0 Eq. (73} is, because of
Eg. (79) of the order of magnitude 1/k . For the inhomogenecus waves of
the higher terms, however, it is only of magritude 1 Egq. (792).

From all this it is justifiable to neglect the inhomogereous waves for
the whole inside, including the atoms in the boundary and to take into con-
sideration for the dyn>mic concition, which must be satisfied at each atem
orly the potential Hq and the term 00 of the potential Hc.

We must briefly inspect this last term. We have

ONPPIRIWT IR AN

Voo = }/]"oz_,, a’—ﬂ’ —_ V&gz_p + ?.z

= k)1 -9 50’3 , (78b)

=&‘,(3{)83°

it

where v = k/k, is the index of refraction, and (8) and (R) are respect-
ively the angles formed with the z axis by the refracted ray {constructed
according to the law of refraction) and by the incident ray:

{ sin 3,
(sins - y)
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The only remaining term from II o 1S, when written out in full:

1% i1 texr+ifyvikscosSes 1 . 1
€ -20’)6 1_8—2‘“*0“‘30"7) koms. : (80)

The wave normal thus lies in the plane formed by the refracted wave and
the z axis (plane of incidence). The phase velocity of the wave will be
recognized from

VT B T 5yg? = &y [See Eq. (79by]

as the light velocity in free space. Finally the angle to the z axis is the
same angle (8;), under which an incident wave would produce the internal
wave by refraction.

In the approximation which neglects term= of higher order in ck0 the
factor

1
l_e—Zic(t.em&-y) -

may be replaced by

i 1
2ic kcos3y—g {802)
1 1 1 1 dnd

= Zic F,co8S,—kcoeS  2ic &, ®ib (3-8,

3.1.2 THE EXTERNAL WAVES Ha.

The potentizl Eq. {71) in outer space is very similar to the potential II o
just discussed. Also here the term 00 excezds the amplitude and significance
of the other terms and one can restrict oncself to that one term.
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The term is here

0  iax+ify-ik coelds 1 i
Hw=2"c YT . (81)
2ab l—e k, cos 8,

The wave thus again proceeds in the "plane of incidence". It is the mirror

image of the wave Hc with reference to th2 surface and kas therefore the
direction of the reflected wave, which by Snell's construction, is associated
with Hq as the refracted wave.

s amplitude is different from the inner boundary wave Hc, since here
the factor next to the last is replaced by

1 1 1 3in 3 .
T Lond, +71 . 2ic k sm@+3) 1812)

Figure 8 shows the three waves with their propagation directions and
velocities.
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4. FULFILLMENT OF THE DYNAMIC CONDITIONS,
THE FRESNEL FORMULAS

The theory of the unbounded crystal has as its objective to show that
the assumption of planes of equal dipole phase leads to a dynamically pos-
sible state, As a condition of this self-consistency it was found that the
propagation velocity of dipole phase and with it that of its accompanying
light wave must have a value determined from the dispersion formula.

For the bounded crystal the field by which a dipole is excited results
from tao potentials, the potentals Hq and Hc, from which however there
is to be subtracted the part which is emitfed by the excited dipole itself.
Since Hq everywhere, even for the outermost boundary atoms, is identical
with the potential in the infinite crystal, the same field of excitation, and
therefore the same mode of dipole oscillation is gererated in the bounded
as in the wnbounded crystal onlyiiﬂccanbesuppressed. As the dynamic
conditiu for the feasibility of the assumption of planes of equal dipole
phase we refain here as there only: that one must choose the correct phase
velocity gq. In the optical case the potential Hc reduces to a single bomo-
geneous wave that geometrically coincides with the incident wave extended
into the inside of the crystal. Therefore the amplitude and pbase of the
dipole wave can easily be so adjusted, that II o and the incident wave cancel.

In order to accumplish the transition from the potential to the field
strengths, we take some consigerations befo: 2hand which will be system-
atically discussed in Section 5. In doing so we limit ourselves bere to the
case of a cubic crystal (a = b = ¢, wave velocity in all directions of equal
value, dipole oscillation at right angles to the propagation direction s;
compare dispersion theory). All of the potentials when completely written
out lave the form

BB

ea ezll ’

where x is either k or k, and ea =} signifies the moment of the dipole.
According to Part I, Section 2, Eq. (4), the field strength is obtained from
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the potential by the operation curl curl. We assert bere and prove it in
Section 5, that this operation in the general case yields the dielectric dis-
placement D . Ornly in the case of empty space, £ = 1, does it likewise
yield the electric field strength €, which then is equal to 2.

Take as the propagation direction the x axis; we obtain from the above
potential

D ,,_al_a‘,.--x__i’_a g = {)
= 8z ox* ¢ '

¢ O ix & ix ix
Ry L e A

o 8 i & INY ixy
e AT - ik L

This means generally expressed: In converting to the field, only the
vomponent of the amplitude at right 2ngles to the wave normal produces a
contribution. The field of the vector © differs from the field of the
transverse pari ci the vector potential by the additional amplitude facior
x2 (=k2 orkO%. We have thus to distinguish two cases: one in which the
dipole oscillaticns occur at right angles to the plape of incidence, and the
second in which the oscillations occur in the plane of incidence. a the first
case the full amplitude g is valid for all three waves; in the second case
the amplitude is reduced by 2 cosine factor,

From the potentials Eqs. (77), (80), and (81) we obtain according to
this, the following field strengths for the refracted wave, the boundary

wave, and the reflected wave when the oscillations occur in the plane of
incidence:

L Refracted wave:

D, S e Rt (&2
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O. BRoundary wave:

23 sn 8 it
P, = acos(3—3,) = = ! :

‘ r mRG-%) 3 (Comd(sz.))

III. Reflected wave:

-

22 sind 1 s
: - {33 _— . e
T,= acosPBH) - T SR

Eerev=83355tbevolumeoftbeelemazazyczzbe, If the oscillations are
at right angles to the plane of incidence, the first cosine f2ctor is omitted
from P, and T, .

Now we relate the incident wave 2, ard the bomndary wave according
to the condition of cancellation

For oscillations in the plane of incidence, the ampliinde of the refracted
wave is then expressed by the amplitode of the incident wave as:

&’2 L *B—a‘)-eoss.

D "B -8 sas
” 8-
=2 1—»% gwa :J - mg‘ {839)

m 3
-2"2-0053‘ ﬁl(’é-;,)-e!@—'a.‘)} =%

L

* Tie abbreviation g hes not been changed ir these equaticzs — i is
obviously tan.
** The following formulae are wseful for the canversion:
1-92t=cos®3, - rtoce?3
_ xmf3 = 3) sing3 ~ )
- sia* 3 !

Further: o083, -rcos3 snd-3y)
083 ~-70083 sm(3+ 3
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and the amplitmie of the reflected wave as

2, coe3+3,) s8(3-%  w(3-3)
od cos5—3, se(3+8,) BB+ * %% (83h)

FPinally, for the case in which the oscillations are polarized at right
angles to the piane of incidence, the refracted wave would be mult*plied by
the factor cos (8 — 8§) and the reflected wave would be multiplied oy

cos (3 — &;)
e (3+3,)

The formulas for oscillation at right angles to the plane of incidence are
thus

p N »” ﬁaﬁ—s.)’ s %
i—’2~ = s ”3.-2””8..:‘-—7'—;—3:') (82a)
iR iz 3-3%,)

T meIN’ (84b)

These formulas are in agreemert with the Fresnel formulas for the vector
D, the dielectric displacement (compare the formula for § in Drude Lehrb.
d. Optik, 1. Edition. p. 258-262).

The preceding treatment of the problems of reflection and refracrion
bas been developed strictly within the framework of the tteory of electrons.
R confirms ihe expectations of the theory of dispersion regarding the in-
fluence of the bomndary. The fact that an imternal boundary wave appears in
the elaciron theory is the point which allows a2 deeper insight into the prob-
lem thar the derivatioz according to Maxwell on the basis of boundary con-
diticns. Even tdongh these doundary conditions were estahlished from the

*, #*See footnole on prge 68.




concepts of electron theory, the very characteristic property of the
boundary lies concealed in the boundai conditions and it does not appear

as distinctly as above: why the electrons are bound to oscillate in the
described manner ii: order that they harmonize with the total field of excita-
tion,

The difference of the Fresnel formulas in the two cases of polarization
is clarified here in a very direct way as beiag due {o the component forma-
Hion of the dipole amplitudes. A particular case of this is the familiar ex-
planzticn of the Brewster angle, as that angie of incidence for whica the
oscillations of electrons in the body (so far as they cecur in the plane of
incidence) have the cirection of the reflected ray and are thus optically
inefiective in producing its amplitude.

3. OBSERVATIONS ON THE TRANSITION FROM THE MICROSCOPIC FIELD
TO THE VECTORS € AND & OF THE MAXWELL THEORY

The Frespel formulas were derived in the preceding paragrapks by
replacing the potential Hq by its average value over an elementary
parallelepiped; by further performing the operation curl curl on this average
value, and by claiming that the macroscopic field of the vector ® may be
obtained by this method from the microscopic field.

The reason for this procedure is analyzed in the following.

The vector potential was chosen in view of 2n easy description of the
field of a dipole. In so doing, in particular oy setting ‘€ = curl cuxl B
{Part 1, Section 2, Eq. {4)), it was assumed that the field propagates In
empty space (¢ =1). The potential e X0F/R satisfies the differential
equation for vacumm

dR +KIB=0. {85a)

By this rule also In Part 1, Section 7, the excitatica field was obtained
from the exciting potential.
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By averaging the total potential a/7 to smcoth the fast fiuctuations,
we find that the optical potential now satisfies the equation

dF +k2F=0 (85b)

kz is the constant occurring for the propagation in 2 medium with the
dielectric constant g (= vz). But whenever a vector potential satisfies
this equation, then the operation curl curl produces frox it the vector 9,
the dielectric displacement.

This follows from the definition of the vector poiential. It is intro~

duced for a body with the dielectric constant € s0 as to lead tr a2 soluticn
of Maxwell's equations

Y 9= —curl G (852)
Y D= cul § (86b)
divp=13 (86¢)
divd-=0 (86d)
D=¢E¢ 186e)

One determines in view of Eq. (86c) curl ¥ such that
1 cul =9

the second equation then makes
D=culcurl ¥

whereby also Eq. (86d) is satisfied.
One can now dispose of div ¥ by putting

div¥ =0,
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thus Eq. (86a) in connecticn with Eq. (86e) requires

4?{--%-*-*0 or AR + iU =0 (85bY)
Let it be noted immediately that for an orthorhombic crystal the relation-
ship between § and ® is not given by Eq. (86€) but by the three equations

V=88 D,=4C; D,=4C, (86e')

and that thus the three components of ¥ satisfy different equations
Eq.(85b), in which, instead of the uniform € are substituted £ ey &, for
the three components %, %,, %, But here as in the isotropic body
(cubic crystal) it is always true that

curl curl ¥ = D. (85¢)

So much for the reasons that the method used provides the Fresnel
formulas for the vector ® and not for §,. However, a remark may be
added on the transition from the diffexr aiial equations Eqs. (85a) to (85b),
which is connected with the definition of the volues € and D and which
throws an interesting light on the logical aspect of the first part of the
theory of dispersion.

The total potential satisf’es Eq. (85a) before averaging: Ea. (85b) after
averaging. The integration over the eiementary parallelepiped can pro-
duce a change in the differential equation only because it includes an in~
tegration over the pole, For the integration of §, which wouid become
infinite as 1/R, the pole is insignificant, However, if 4% is integrated
over the pole, the near vicinity of the pole contributes, as is well known,
a2 term 4np, where p = e-a signifies the moment of the dipole, while
the remainder of the integration space produces 4P where P denotes
the average potential. The average of the Eq. (858) over the volume v thus
gives:
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AF+ 438+ Ep =0, (850)

If now the average of the potential is the potential of the Maxwellian
quantity ® tben it must also satisfy the propagation equation for D .
That is, we must also have

AP + 2R = 0. (85¢€)
From these two equations, the average value of the potential itself follows:

h?~ IR = 2 p = —4a}

or

4n
% = - E—F y. (85%)

But this is exactly the result from the theory of dispersion [Part I,
Section 6, Eq. (31)] which was agein derived in Part II by averazing ovel
the sum of the dipoie fields [Eq. (77)].

One sees: If it is assumed that the average value of the potential is
the potential of the optical field and therefore satisfies Eq. (85¢), then it is
rot necessaxy first to calculate the exact fields produced by the dipole
oscillations, Rather, one can infer the Maxwell field quantities directly
from the assumption made concerning the dipole oscillations., Whether the
assumed state of dipcle oscillations is dynsmically possible, one is, how-
ever, not in a position to decide without going into the details of the field.
But only a knowledge of the fields in the immediate vicinity of the dipoles
(the excitation fields) wouul be required for finding the answer.

The logical place of our computation of the total field fron: the as-
sumed dipole oscillations is, in Part I, the theory of dispersion, an
existence proof, Without using the assumptions necessary for the deriva-

tion of Eq. (85f), it is shown that there exists an average value of the
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potential which satisfiecs Eq. (85b) and is therefore the potential of the
optical field. In the theory of reflection ard refraction on the other hand
the computation of the total field serves the purpose of resolving the
dynamics of the problem. It could therefore not be omitted, even if
relationship Eq. (85f) were used.

In conclusion we compare our definition with that used by H. A.

Lorentz, 1 The latter is, written in our units
D= + 4n p ’

or

D=t dn=—dn e b (85g)

The same relationship between the dielectric displacement and polarizatioa
we also obtain from the relationships Egs. (85c) and (85f) in all cases in

which the assumption of the average polarization p is descriptive of a state
which is consistent with the Maxwell Eqs. (86a) to (86d), that is, whenever

4% + k3p =0; divp=0

We have then from the definition Eq. (85¢)

D= curl curl §= — 42

1 -
F3 gy curl curl 3

k®
2 e 4%2'—:——970

in agreement with Loreutz.

(1) Enzyklop, d. math, Wiss. V, 14 (XXI), (XXV), (XXXT) and
No. 30,
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The definition contained in Eq. {85¢) thus leads to the familiar vector of
dielectric excitation or displacement for all states of dipole motion which
permit comparison with 2 Maxwellian field,

6. WAVE EXIT, TOTAL REFLECTION

In order to study the exit of a plane wave from the body, which as
before fills the upper half space, only small changes in the final formulas
are required. This case differs from the preceding one only by the reversal
of the wave direction, that is, the values @, B,7 have to be replaced by their
negative values. We make this change, and the principal terms of tke three
potentials Egs. (77), (80) and (81) then read:

—iar—ify —ive:z

L .1 (872)
I =352° 1—edictm—1 3, '
in —fax—ifiy +ivys 1 1
=17 —_— 2 75
1, a3 ¢ P s Read (87%)
-iar—ify—iys
II=-"¢ 1 . (87¢)
7™ Zabe kot — k*

Here Yoo has the old value:

Vo = VAT — @ — P = &, YT — 97 5in7 3. (874)

In Hq we recognize again the old wave of velocity q, now, however,
running towards the boundary. Its amplitude is unchanged.

Ha ag well as Iic have the phase velocity ¢ and have their angle with
reference io the z axis preserved, but the angles to the x and y axes
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changed, so that the negative axis directions replace the positive ones.
Also the previously given amplitudes are changed. We substitute as above
[Section 3 Eq. (80a)]}:

1 by — . 1
1_e2t’c(v¢.—rn 28c v — 7
(87')
S MR U
l_e‘2f6(7~+fl 2%e¢ '.0+_7
(87'")

The pictures of the waves which result from incidence and exit are
compared with each other in Figure 9.

One now sees easily how to fulfill the dynamic requirements. The
internal wave of velocity ¢ has to be removed, since *t wculd disturb the
electrons whose oscillations are balanced only against the wave of velocity
g. This is accomplished by considering the dipole oscillations coupled to
the intermally reflected wave q' which would produce aun internal boundary
wave c' of the same dirvection as ¢, (Figure 10). Its amplitude is deter-
mined by the requirem.ent that c and c' cancel each other. This gives at
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Figure 10

the same time, the condition for the newly introduced dipole oscillations
to harmonize with their field q'. Finally, the field which appears in the
outer medjumr as the transmittea wave of amplitude a" arises from both
component waves q and q* that is, from a and a* superimposed. We set
the amplitude of the wave striking the boundary suriace trom inside equal
to 1. Thus we bave the following formulas fo= the amplitude values of the
potential:

qg... 1

e.. —oopyr oo kI—KY  from Eqs. (87h) and (87")  (882)
Therefore

... +1% ! --}—--k.’-lt’)

? Yty e

and further from Eqgs. (77}, {80), and (80a)

(88b)
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and hence from Egs. (872) and (87'), and Egs. (77), (81), and (8la)

o’ . r
T =a+a ..

LU R Y Py Y W Sk A7 S S0 (88¢)
(]

S Ye—7 ¥ (Poa + 7 7

In going over to the fields, q and q*' have to be multiplied with the factor k2,
the wave a" in outside space however by koz. H we continue to set the ari-
plitude of the field strength of the wave q equal to 1, then the amplitude a"
contains the factor ky2/k” = 1/v%. By utilizing the formulas mentioned in
the footnote section 4, page 68, the amplitudes of the internally reflected
and the transmitted wave, for the case that the oscillation is at right angles
to the plane of incidence, become

. sin (3—3.)_ ” 2 cos(3sinS,)

7. TwmErse ¢ W mees) )

These are the same values as are obtained from the Fresnel formulas
Egs. (84a) and (84b) when the angles (8) and (8,) are interchanged and
v is revlaced by 1/v corresponding to the progression from an optically
denser to an optically thinner medium.

Fulfillment of the dynamic conditions has thus provided the correct
amplitudes also in the case of wave exit. It was tacitly assumed for the
last conversioans ‘hat

to=Vhi— = = k}yT—rsi’3

may be replaced by k&, cos 3,. This implies that we are not dealing
with the case of total reflection.

Let us assume now, that the angle of incidence (8) of the internal
wave with the boundary surface is so large that total reflection occurs.
Voo is then imaginary and the two boundary waves associates with the g
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wave in inner and outer space are no longer homogenevus, but inhomo-

geneous. They agree in this regard with the higher terms of the series

Eqgs. (71) and (73) for the potentials Ha and Hc whose principal (00) terms

they were, But compared with these higher terms, for instance the term

{01), they show a quantitative difference in the degree of inhomogeneity.
While

voo = Vhoo —a* —(3[b— 3¢ =ixjh
bas an imaginary value of the order of magnitude of 1/b,

$oo = ik frisin® 3 —1 ik,

is only of the order of magnitude kj, that is, 1/A. The inhomegeneous
wave (00) thus reaches with noticeabl= strength as far down in depth as the
value of the wavelength, while the higher order waves do not reach bevond
the first atomic layer. Also, as before, since the factor 1/v ¢ 2PPRaTS in
the absolute valr . of the amplitude, the higher inhomogeneous waves are
much weaker than the principal wave (00). Physically speaking, the higher
inhomogeneous terms describe the perturbation at the surface, which is
caused by the discontinuous nature of the surface. The (0C) wave, on the
otter hand, is produced by the events in the interior and is independent of
the smallness or coarseness of the surface lattice of atoms.

The dynamic conditions remain the same for the total reflection as for
the previously discussed exit of 2 wave from the medium. The internal in-
homogeneous wave ¢ must be removed by considering the internally re-
flected wave. Inside the medium, the two inhomogeneous waves ¢ and ¢!
are superimposed. For the reflected wave in the interior we obtain as
above Eq. (R8h) the amplitude

_Tw—y _ kcos3— i,V Enta—1

Tty Feos3+ ik Vo sin®3—1 :
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Its absolute value, which is the important quantity, is 7 since numerator
and depominator are complex conjugates.

The potential of the inhomogeneous wave in outer space has at the
boundary the amplitude [ compare Eq. (880)]

_1__ s l - _ ,’._,\‘ 2cos 8

*’u(h, k,).,,-, (r..+7’)) GYrEs’S—1+rcou8)
The absolute value of this is

2ecos3

?» -1

For the field of the el.:ctric vector, we have to add the factor k02/k2 = 1./112
for the same reasocn as previously. That the result coincides with the one
obtained from Maxwell's theory, follows from the fact that it can be obtained
here as above from the srespel formulas by replacing c¢os 8, by
i}»tsin?S —1 .

I. TRANSITION TO THE CASE OF X-RAYS *

" The series Egqs. (71), (72) and (73) for the field inside and outside the
crystai are valid in all strictness on the basis of the assumptions. The dis-
cussion of the p:evious paragraphs indicaies thet for the case of optical
waves (ak << 1) the three series reduce esserntially fo their principeal terms,
in which all indices are zero.

1t is otherwise when x-rays peneirate the lattice, ™ We consider the
field in outer spece, whose poiential is the series Eq. (71) (The same
consideration is associated also with the exit of the z-rays.) There exists

—— e t—

* This case I have 2lready treated on the basis of formula (73 in
Phys., Zeitschr. 14:465, 1913,
APA

**The lattice is saturally thought of as being perfectly regurlar. In
particular the attepuating thermal moton is completely neglecte.
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w a whole series of terms for which

_ ] T im=x ye
, e e e
is real, and which therefore describe homogeneous plane waves, Among
these waves those are dominant for which the depominator ¢f Eq. (71)
vanishes, The condition for i{s first factor to vanistk is that

C{rim +y)=mn=2
where n is 2 positive or negative infeger. Restated, this condition becomes
Uxfe—af+(ma[b— B+ (nafc — 7P = &2 @0
Note that here (certainly to a high degree of approximation)

at + g =yt = K3 (= 59).
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Equation (20) leads directly to the sphere constiruction it for tke deter-

minatica of the direction of the interference maxima: R is, in fact, identical

with the Laue emdiﬁons(z’ for the occurrence of an interference maximum.
That the amplitude of the waves appears to be infinilely large isdoe o

the cooperation of the infinite number of dipeles and the neglect of 2bsorptios.
Observe moreover, that in ii2 interior of the crysizl according io the

. Dotentiai HQ likewise each of the waves {{, m, m attzins 2 maximum strengih
for which Eq. (30) is setisfied. The field in the irterior consists essen-

tially of the interference-favores waves. *s coe of these, and not further

3 {1) F.?2, Ewzld, loc. cit. or Enzikiop. 4. math, Wiss,, Ariicle Lans,
- = V. 24, No. 48,

(3 M. v. Lave, Apon, d. Phys, 41; 871, znd Tnzykiop. 4. math, Wiss,
Article Lawe V. 2¢, No, £ s
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distinguishzad from the others, there exists the (000) wave, which in the
optical case was the only dominant one, namely the refracted wave.

One apparently obtains in Eq. (71), an additional mode of infinite
amplitude, namely when the second denrominator vanishes:

.
- b Py OO e ob A

Viwm = 0.

it follows, buwever, from the de-ivation of formula Eq. (71) that
application of Eq. (71) to this case is not permitted, (the pole is in this
c3se of second order).

B is instructive to consider the transition from the case of x-rays to
the case of optics. To that effect, we let 2k gradually decrease —— we can
think of the crystal lattice skrinking while we bcld the wavelength constant,
There are tkes a diminishing number of index pairs £, m, which leave Vim
real., Keeping f,1c comsiant, Vim becomes ever smaller. This means that
the fan of interference rays which is present for the shorter x-rars,
spreads out, A moment comes where the rays which are diffracted the
mosti'a?evim=0. }’z*omtlsmonvlmfort&semyswmldbecmneaw
remain imaginary. As soon as the wave directions approach the crystal
surface the waves become inhomogeneocns. The spreading of the pencil of
interference rays csn, of course, be understood by the increasing dispersive
power of the shrinking lattice which spreads ihe spectra apart. Only the D
ray {indicated thick in Figire 11) does not charge its position in this

PN

"
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procets, I is this »ay that finally re:aains as the only one of the reflected
spectra that survives in the optical domain.
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Postseript 1970
by F. P, Ewdld

DEVELOPMENTS ARISING OUT OF PARTS ! ANG H
ON TEE FOUNDATIONS OF CRYSTAL OPTICS

Before the end of the summer gemester 1910 at the University of
Munich, Iasked my revered teacher, Professor Arnold Sommerfeld, for
permission {o start on thesis work under his guidance. He suggested ior
: subjecis some ten different applications of Maxwe!l's equations to boundary
; value problewm:s; suchk as radio wave propagation, or the self-inductance of
coils of various shapes. At the bottom of the list stood the problem: Does
anisotropic arrangercent of resonawors produce Goublc refracticn ? This
was the only problem that ended with a question mark, ard the Professor
explained thut he himsell saw no clear way of tackling the probiem and that
it would be muck move risky, from: my point of view, of choosing this
problem rather than one of those where he couid foreiell what the solution
would require in the way of mathematics, He explained thai crystallo-
graphers had long since developed elaborate theories of crystal structure
but that these remained purely geometrical speculatiors as long as uo
guantitative conseguences had been drawn - and that if I cculd find an answer,
it might help to corroborate or to refute the ideas or crystal structure.
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Of ¢!l the subjects he proposed, onfy this one evoked any epthusiasm
in me, and so, after thinking it over, ! returned to him with the decision
that I would like to work on it. Professcr Sommerfeld gave me the ve-
print of a paper by M. Planck on the theory cf Gispersion ~ and with that I
started on a solitary hile up the Rhine valley in Switverland for ihe next
weeks of summer vacation,

I was pot much wiser wher I returned to Sommerfeld in the fsi], Not
only kad I not progressad with my problem, but I evan founc great difficutty
in understanding what Planck was doing, and Planck had slways been praised
to me as a master of clarify, There seemed to me to be some confusiop in
his calculation of the field created by the resonators (dipeles) in ths mediuws
and the "incident field which zeemed fo exist in addition,

Professor Scramerfeid, meanwhile, bad alsc given some thought fo the
problem. Using the Hertz potautial, he kad tried to sua up the fieids of
the spherical waves issuisg from the dipoles at the nodal poiris of the
orthorhombic iatrice and had recugnized that the main obstacie in this
swnmatior was the fact that the dipole cocrdinates X, Y, Z, +ntered in the
Hertz potential! only in the irrational expression

R= &’ w-p?+ @

where (x, ¥, Z) denote the field point, He then shtwved me 2 representation
of %ei‘m by an integral containing Besszl functions of r, the two-dimeusional
analogue to R, and en exponential &:ctor in which the exponent wius lincar
in the third coordinate {Z ~ 7). The summation over the third coovdinate
could then be readily performed under the integral sign, for it was nothing
but the sum of a geometrical series. Cculd we nci, Sommevfeld suggested,
bring the other two coordinates intc 2 similar linear form? For {he next
few mouths, Itiried, in vain tc acaieve this - then, suddenly, I saw the
light and obtained the desired representation in the form of the triple in-
tegral {Part 1, Section 5, Eq. (25}]. When I arranged to show Sormmerfeld
my recent advance, he greeted me with the words: "I too can show you
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something that should be helpful'' - anc he developed the very same integral
which he hid derived in a less cumbersome way.

The path now iay open for finding the total potential by means of the
residue method and I rapidly arrived at the expression Part I, Section 6,
Eg. (39).

My hapniness ovar this first tangible result was not te last long: I
found it impussible to subtract from this total potential that part that was
contributed by the test dipele. Since the oecillations of the test dipole are
caused only by the radiation coming from the other dipoles, this subtrac-
tion appeared essecntial for the determination of the "'field of excitation”,
The impossibility of a direct subtraction comes from the fact thet I the
exgression Part I, Section 6, Eq. (30), all individuzl dipole fields are
jumbled together and recast info a sum of nonlocalized piane waves in
wkich individual contributions can io longer be recognized, (¥ was rot
aware, af the time, that what I had obtained was a Fourier development of
the tota. fiela.)

Success in the removal of the field of the fest dipole came through
Sommerfeld's assistart, P. Debye. At a skiing holiday in Mittenwald,
Easter 1911, Sommerfeld showed him our quandary. With one glance at
the expression of the total potential, Debye said: ""This is quite simple; you
have to use Riemamn's method of bringing the d2nominator of the sum term
info the exponent of an exponential fumection by introducing a new integration.
The integrand then becomes a theta-function and you can apply the trans-
formation theorem of the theta functions to it." The whole “consultation®
probably lasted po more than a guarter of an hour, Debye was not only an
avid reader of classical physics, but also had an exiracrdinary power of
seeing through mathematical formalism, He did not know at the time in

which of Riemann's papers this method occurred - nor did I ever find out,

When I had finally understood Debye's advice, Itransformed the total
potential in the way he had suggected. This i3 a rather round-about way of
obtaining the theta functions and in the publicaiion I followed a more direct
way by introducing the simple-integral representation Of%t eﬂ"R, [Part 1,
Section 5, Eq. (18)], which leads directly to theia functions.
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For an orthorhombic lattice, the theta function e {X, Y, Z) is the
product of three such functions of one variabie each, and the transformation
is easily wriiten down. The integrands in the twe forms thus obtained are
equivalent at any point of the integratior over ¢. In fact, ope i8 the Fourier
development of the other., Ii is, therefore, permissible {o vse cne integrand
up to an arbitrary point E of the whoie integral psth, and then change to the
other form for the remainder of the integration. In the integrai from E to «
individual contributions to the potential are stiil recognizable, and the con-
tribution of the test dipole can be omiitad; whereas in the integration from
0 to E, the Fourier-trausformed integrand is used ir which individual con-
tributions are blotted out. By suitably chcosing the transitior point E, one
arrives at having rapid convergence of the sums in both integrals. A par-
ticular advantage lies in ihe fact that by siifting £, rapid convergence can
be skifted from one sum to the other. Since the sum of the two part integreis
is indspendent of E, an easy check on the correciness of toe mimerical work
is afforded by using two differect values E.

1 heve later extendad this method of caleulating lattice potentials and
Madelung constants from orthorhcmbic fc general Iattices.® There, the
theta function of the three space coordinates ne longer splits into the pro-
duct 4x} - &y) - &z). The tvansformation property of the cpace-theta was
contsined in the maia text on theta function, ** but in a horribie form, By
using the concent of the reciprocal latiice, I could re-state it in a way akin
tu the tools of the mathematical physicist. Since tken, the theta function
method has been the favored one for calculating Isttice energies and po-
tentials. The neat w2y in which the formal splitting cf the integral for the
potential produces two rapidly convergent parts was interpreted physically
in a later paper of mine, wE

* Ann, d. Phys. Lpz. (1921} §4‘\ir‘:253-287'

** A  Krazer Lehrbuch der Thetafunktionen, Teubner, Lpz. 1903.

*** Nochr. Ges. d. Wiss. zu Géttingen (1938) Math-phys. Ki, 3:55-64.
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For bringing my thesis to a conclusion, two po:nts had to be discussed:

{1) Did tne formal expression obtained for the refractive indices of
waves travelling along the x, y, and z directions of the orthorhombic lattice
guarentee that the optical behavior of the medium would conformn to the laws
of crysial optice and be valid also for otker directions of light propagation ?
This is anewered in the affirmative sense in Part 1, Secticn 10.

{2) Is the birefringence found, a major or negligible effect? It was not
easy in 1911 to carry out such a comparison because in spite of the existence
o1 an elahorate geomeirical theory of crystal structure the guestion was
left wide open what kind of particle - molecules or groups »{ molecules ~
was to be placed in the assigned pusitiong. Thke birefringence might well
have its origin in an inherent anisotropy of these particles rather than in
the contribution caused by their anisotropic arrangement. What I veeded
for the comparison was a crystal of known birefringence which was buiit
acconding to the simple orthorhombic laitice postulated in my calcularions.
The famcus o)¢ professor of mineralogy and crystallography, Paul Groth,
to whom I took my question, exclaimed after some bard thinking: '"There is
one crystal which is most certainly built according to the lattice you want,
for it has three marked cleavage planes at right angles to one another.

This crystal is anhydrite, CaSO4. Try that.” So Idid. The result of my
calculations is to be found in Part I, Section 11. It was shattering my sccret
hopes of cbtaining values showing at least some similarity to the actual bire~
fringence of aniydrite.

So, with some resignation, I stated that the order of magnitude of the
birefringence due to the lattice arrangement is the same as the observed
one. From this it followed that in any future calculation of birefringences
the eifect of the anisotropic arrangement wouid have to be taken into account,

It was only years later, in 1625 and 1926, that the true structure of an-
hydrite was established as consisting, essentiaily, oi 804 tetrahedra ar-

ranged according to a b-face centered, noi & primitive, orthcrhombic lat-
tice.
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In my thesis, I made some attempt to discuss what would be irapliz.]
in an extension of thz theory to wore complicated assumptions rogerding
the crystal structure. The two sections, one on the influence of infrared
proper vibrations. and the other on the refraction by a general periodic
arrangement of dipoles, did not iead tc any physical results except showing
that some of the conclusions reached ucder the simpler assumptions wouid
be invalidated; they were, therefore, omitted from the paper published
in the Annalen der Physik.

The calculation of double refraction became much more realistic once
the determination of crystal structures had become possible after Laue's
ang Bragg's work in 1912, In particular, E.A. Bylleraas was very success-
ful in accounting for the birefringence of the tetragonal calomel (Hg2C12)*
and of the trigonal Quartz \a'ioz‘;** by an extension of the theory to more
general structures than the simple dipcle lattice. in the case of quartz,
Hylleraas could also account for the optical rotatory power, using an ex-
tension of my theory which kad meanwhile been worked out by M. Rorn in
order to derive optical activity from the presence of screw axes in the
crystal structures. In all tkese caess, it was sufficient to assume the atoms
to be represented by isotropic dipoles; later, cases became known where an
inherent anisotrepy of the resonators had to te assumed in addition tc the
effect of their anisotropic arrangement, ***

The theory of "Dispersion and Double Refraction of Electron Lattices
(Crystais), " was first printed under this title in Gdttingen 1912 and sub-
mitted as Ph. D, thesis to the Philosophical Faculty {II. Section! of the
University of Munich under the date of 16th February 1912, The present

* Zs. {. Physik 1926, %5:85%896.

** Zs. {, Phys, 1927, 74:871,
MA

*** See, for instance, H.C. Bolton, W. Fawcett, I.D.C. Garney,
Proc., Phys. Soc. (1962) 8&:199-208 and (1963) %33’-46.
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translation is from a subsegquent publicat:icn" where, ucder 2 new general
title Foundations of Crystal Optics, an introduction is given =ot only to the
theory of dispersion, but also to Part II which is called Tkecry of Reflec-
tion and Refraction. Two more papers appeared under the same geaeial
title, namely in 1917%*, and twenty years later.” "

The latter two parts deal with the case that the wavelength of the
optical field is sborter than the distance between neighboring atoms in the
crystal. The strictly valid transforinations of the sum of spkerical dipoie
waves from Part I are again used, but their discussion proceeds along
entirely different lines for the X-ray then for the optical case. The same
conditicn of consistency of the dipole oscillations with the field created by
them is applied and its result is the determination of the mode of propaga-
tion of the optical field in the interior of an unbounded crystal. The X-
optical field, however, is more complicaied than that of visible light, for
it consists not of a single plane wave, but of a pencil of such waves which
are coupled together. The dynamical condition for the propagation of the
X-opticzl field is expressed geometrically by a surface of a similar nature
to the surface of normals in visible optics {Part I, Section 10); for X-rays
this is called the surface of dispersion. Once this surface has been deter-
mined, all pcssible modes of propagation of self-consistent X-ficlde in the
interior of the unbounded crystal are known. There remains, however, the
same preblem as in the case of visible light, namely of relating the internal
optical field to the external one for a crystal with boundary, i.e., a erystal
filling oniy one half-space. This problem was treated for visible light in

* Annalen der Physik (Lpz) (1916) 49:1-38.
2%

*+ Part II: The Crystal Optics of X-Rays, Ann. d. Phys. Lpz (1917)
34’\:519-597.

*+xPart IV: Establishment of a General Condition of Dispersion in
Particular for X-Ray Fields, Zeitsch. f. Kristallographie (A) (1937)
97:1-27,
AMA
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Part I of the series, and the same principie, estaldished there, could
later be applied {5 answer the X~ray case.

The so-calied Dynamical Theory of X-ray Diffracticn of Part Il was
restricted by the assumption that the crystal couid be represented by a
simple {*vimitive's lattice of dipcles. The restriction o an orthorbombic
lattice was lifted because one had meanwhile learned tc handle conortbogonal
lattices by means of the concept of reciprecal vector sets. * hthe simple
case of only two plane waves forming tie X-opticai field, or.: could deal
with a general crystal structutre, thus getting rid of the fir :r restriction (on
the orystzl) by introducing a pew cne (on the field). The : :sulting intensity
formula (bt not the entire thecry) was pubiished in a paper of mine, **

This, however, left the general case unanswered ir which an X-opticz?!
field conaisting of & cecmponent plane waves {ravels trough a2 general peri-
odic crystal struciure. This problem was tacided in . art IV and brought
to a general, if formal, solution. The ideal aim of this thecry was to
obtain a uniform treatment valid for short X-wavel engibs as well as for
the long ones of visible light and beyond this for the static dieleciric
constant, and all that in a quite general periodic medium. The formal
answer cbtaired in this paper deals caly with the internal condition of
self-consistency which, however, is the clue to the boundary problem. An
application of this general theory fc the propagation of an X-field counsisting
of three plane waves in a diamord-type structure is to be found in the paper
by Ewald and Héno, ***

TEke dypamical theory of X-ray diffraction was recast in a different
form in 1931 by M, von Laue. The crystzl was considered to be a con-
tinvous pericidic medium ir which a pericdic dielectric constant affects the

propagation of {he X-~rays. Laue's theory thus departs from the strict

* Introduced by Willard Gibbs in his lectures 1381-1884, but first
publisbhed in Gibbs~Wilson Vector Analysis, 1901,

*< Physik, Zeitsch (1925) ~2§:29-32, and 1926, %1:182.

*2¥ Acta Crystaliographica 1968, 24:5-13,
A
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concepts of the Lorentz electronic theory of matter and makes use of the
Maxwellian material constants and field quantities and their relatione., A
justification for this step was given by M. Kohler in 1935 on the besis of
wave mechenics and perturbation theory, Tte chief difference between-
Laue's and my own version of the theory is that Laue makes use of ilax-
wellian type boundary conditiors at the surface of a lali~crystal in order

to connect the external and the internal field, whereas in my theory this is
achieved by the conditicn of self-consisiency whick has to be satisfied at each
dipoie throughout the depth of the crystal. The results are the same in both
versions,

The dvpamical theory of X-ray diffraction has achieved increasing importance
where crystals are used as optical instruments of considerable perfection.
Of greater practical importance, however, is the application of the concepts
created in this theory to the case of electron diffraction. The scatiering
effect of matter is much stronger for electrons than for X-rays. and
therefore the multiple scattering effects are more prominent with o'zl uns.
Since these are included in the "dynamical” theory, this theory has to be
applied to electron diffraction at an earlier stage of refinement than is
necessary in X-ray diffraction. The theory of electron diffraction was
first given by H. A. Bethe in 1928, and it uses many of the concegts in-
troduced for X-ravs. R is a scalar theory of diffractior dealing with
Schrodinger's psi function as the field quantity rather than with the vectorizai
field strengths of the optical theory. The theory is an unfailing guide in the
discussion of the highly complex observations of electron diffraction,

With the advent of neutron diffraction, the concepts and methods of the
dynamical theory found an important new field of application. *

After this shoxt survey of the wide field of developments beginnir g with
the two parts of the series which are to be found bere in translation, let us
return to Part I with some comments, It contains the coanection beiween
the internal and the external field in 2 “half~-crystal, " i.e., 4 lattice 1illing

* See for instance C.G. Shull (1968) Phys. Rev. Leiters, 21:1585-
1589, MA
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one mali space and cut o:f at the surface z ~ 0. The half-crystal is stil}

infinite, but it is bowr.ded. Strictly speaking, it has no bomdary in the
sense of the Maxwellian theory for £ continnous megdiirm, and therefore

the lheory does nct conizin boundary conditions which would be valid over
the entire plene z = 0. Instead, the helf-crystel isanﬁstrud:mewiﬂz
enmpty space not only outside the lattce, but also insice between the dipoles.
The peculiar boundary conditions for a continuoss medium, lke E agnd

tang
D the same on both sides of the boundary, are replaced in the open

stt;;r'c?nre by the condition of self-consistency at the site of each dipeie, no
matter at what depil under the surface it lies,

H was already pointed out in Part I, that in the theory i dispersion
ttere was no voom for an inciéent wave - in fact where shounld it come from
if the crystsl fills all space? In Part II, it is shown that by restricting the
summation of spherical dipole waveleis to source. on one side of the plane
z = 0, exira fields are created which travel on buth sides sway from this
plane with the velocity ¢, or in the higher ferms of the serieg, are in-
bomogenecus surface waves; i.e., waves whose (small) phase velocity is
directed along the surface while their amplitude decreases exponentially
with increasing distance from the surface. The term 'boundary waves' is
used for these waves in order to encompass both the homogeneous and in-
homogeneous ones. In other places’ I have called them epiwaves, in
contrast to the field in the unbounded crystal which consists of mesowaves.

In Part II, the boundary waves arise from residue formatioa at special
series of poles in the plane of integration. A less formsl waderstanding of
their occurrence is desirable and can be obtained in two different ways.

The first is a simple application of the sum of a geometrical series,
say of quotient Q. The infinite series, 1+Q+Q2+... has the sum
1/(1-Q) ; the finite series, 1+ Q +Q2+... -rQ(P'l) has the sum (1-QF)/
{1-Q), that is, an additional term is caused by the termination of the series.

* For instanec Zi: Gomer and Smith, Structure and Properties of Solid
Surfaces., Univ. of Chicago Press 1953, Ch. IL
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Now we copsider the spherical waves issuing from a plane of equal dipole
phase. These waves will, soon aiter ieavipg tnat plans, merge to form a
plane wave travelling with the velrcity ¢ 2vay from the plane of the dipoles.
At a field point z there arrive suck plane waves emifted from the nearest,
the next nearest anc successively more distant planes of dipoles. Since the
assumed veloccity of the dipoie phase is g, there will be at z a time lag ¢
between contributions from peighboring dipole planes egual to a{l/qg-1/¢)
where a is the distance between the dipocle planes. We thus obtaiz at z a
sum of waves of equal amplitudes but with 2 phese factor Q = ejw between
them where v is the frequency and j = 27 ﬁ The resulting amplitude at
z is the sum of the geomeirical series

PN R S

Hf the series is continued to infinite values cf n {(assuming a slight absorption
for the sake of coavergence), the resulting amplitude is 1/(1-Q). H we
bave to terminate the summation at the (% - 1) 5t laver above z, an additional
term QN/ (1-Q) arises. Tkhis term corresponds to ihe boundary wave, A
full discussion of the theory along these simplified lines is the subject of a
paper of mine. *

The second, even more physical way of inderstanding the field in the
interior of the balf-crystal is this. Imagine first ali space filled with the
dipole lattice osciliating as assumed in Part I. The result is the field
derivable from the potential Part 1, Section 6, Eq, (30) which we now call
for short the mesofield. Next cancel the contribwtions of the dipoles above
the plare z = 0 by adding in the upper half of spece fictitious dipoles of the
opposite phase, Ther the total field in the lower half-spacc is the sum of
the mesofield and the field produced in the lower half-space by tbe fictitious

* Fortschritte der Cher ‘e, Ekysﬁ-: urd physizal, Chemie Serie B (1925}
18, Heft 8 (Berlin, Gebr. Borntrager Verlag). See aleo Physica (1924)
4:234-251.
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dipoles, i.e., cutside the fictiticus medium. This is, of course, a field
corsisting of waves of veloeity c; in fact, itis the field of the internal
boundary waves of the half crystal. Tk fictitious dipoles, apart from
destroying the mesofield in the upper half of space, also create ihexre an
internal boundary wave in their (fictitious) medium. ¥or the real half-
crvstal thie is its external boundary wave which then becomes the reflected
wave when the relationship to the wave incident on the half-crystal is
established.

This physical sxplanation is not too different from the foregoing ex~
planation by means of the termination term of the finite geometrical sexiez.
For the formula for tre finite sum can he interpreted as the instruction:
sum first the infinite series and then subtract a1l terms beyund the point of
termination (p ~ 1); i.e., the same infinife suries bit with all terms muiti~
plied by a facior Qp .

My entire series of papers deals with the optical proilems strictiy in
the aense of A, H, Lorentz' Theory of Elecirons, but differe from hic
treatment by the fact that ro aversging over random positions of dipoles
becomes necessary. This is the virtue of Soramerield's clear formulation
of the rroblem. Shortly after my work, and independent of i¢, Profcssor
C.W. Oseen in Oslo found the same screening action of a boundarv that is
so escential in my treatment. His work is based on Maxwell's cguations
for a homogeneous medium, He assumes 2 light wave to fall o a finite
body bounded by & surface S. on which the usual boimdary coaditions hold,
By transforming the integral expressing the polarization created i the hody,
he showe that this cousists of the two parts, one of which conforms fo the
wave egquation Au + nz u=0with » = Ko =uk 5 and the other with x = ko,
where k o = Wave constant in free space, n = refractive index and K o = wave
constant in the medium. The same holds for the total field, which is the
field created by the volume polarization ii ihe “edy plus the field incident

froin outside. The condition of self-consistervy in the hady can he ful-
tilled only if those parts of the field vanish that progrsce with veloeity c.
That is, the external field into which the body is nlaced, must canesl that
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part of the field which originates in the voiume polarization and progress<s
with valocity c. iae latter part can be expressed as a surface integral of
the polarization over the beundary surface S. Thus it is by the action of
the surface that the body is shielded from the impinging optical field,

This is in graeral terms the same result that I obtained for the special
case of a plane boundary. 'The Oseen theory is well rendered elsewhere.*

Lionking back on the mathomatical technique used in Parts Iand I, it
may well be considered cumberscme. When the papers were written, the
technique of Fourier trausforzoation was still in its infancy. Reciprocal
sets of axes had yet tc be discovered by physicists., Their importance for
the Fourier developrment of functions in a non-orthogonal cell was shown in
my pauper”“ar on the reciprocal iattice, but even then the idea of considering
the Fourier coefficients £s the transiorm of a periodic function had either
not been pronounced or not gairved the atieniion of the pnysicists. Now-
adays, the transforquation of the sum of spherical dipole waves into 3 sum
of plane wavez is achieved easily by applying a few seneral propertizs of
Fourier transformation. Thie method can be found in my paper, ***
recording a lecture given in 1832,

My papers contain, for the first time I believe, a clear separation of
{ae internal problem of finding the kind of optical field that can exist inside
a dispersive medium, from the externzl problem of finding ovt waat happeuns
if an exiernal wave falls on the surface of such a mediwx. It iz only lately
tkat I bave become awasre that the splitting of tke entire problem into these
twi parts corresponds quite c'osely fo the division into iwo steps of the
mechanieal probiem of osciliations generated by an impact on a meckanical
system. There, g preliminary study 1s made of the free osciilafions of the
system. and the kncwledge sc gained is subsequently applied to the hehavior

* Born and Wold, Principles of Optics, 2nd ed. (1964) pp. 100-104,

Pergamon Press. The origina: paper by Oseen is Ann. ¢. Phys. {Lpz.),
(1915) 48:pp. 1-56. -

**Zeitsoh, f. Kristallog (1921) 56:129-155.
*#*Anpales de 1'institut Henri Poincare, isi'.’%-no.
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of the system after an impact has set it in motion. The free cscillations
are those requiring no outside forces and they can exist culy at certain
frequencies, The theory of dispersion (Part I omits all external forces;
to the determination of the proper ireguency (or frequencies) of the
mechanical system there corresponds the determination of the wave vector
K {or, in the case of X-rays of the several wave vectors K}()i)) for which
alone the system of field and dipoles is self-consistent, This knowledge is
used to construct the state of the system filling a half-space whezn an
impact is given tc it by an external wave impinging on its surface. The
davelopment of the mechanical gystem in time is paralicled by the spatial
development in the optical system. This anulogy will be found worked out,
for the cars of X-rays, in 2 recent paper of mine *

It is deplerable that most physicists interested in optics, as a sub-
division of Physics, ignore or nearly ignors the fascinating branch of
X-ray optics. In my papers, visibie and X-ray optics are joined together
in 2 comprehensive theory which, because of the mathematical strictness
of its fcumdation, holds for the whole range of wavelengths, from the static
case (A Infinite), through the visible (A ~ 5000 £, to X-rags (A~14) .
The diccosston, it is true, varies in these different regions, but the
principles on whica the theory == based remain the rare, This wide range
has attraciad wne o the theory through about §0 yeare in the course of
*hich the X~ray optics gradually developed from a purely logical necessity
to a reliable guicde through a wealth of cxperimental chservations which
becan:e fezsible with the advent of the art of growiung nearly faultiess

crystals.

{1969) A25:103-108,
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Appendix 8

Biogropny of F.P. Eweid

Faul P, Ewald was born 23 Janvary 1388 in Berlin, Germany. His
father, a promising young bistoriac, died of appendicitis al the ags of 37
skortly before he was bore, His meiter, beisg free to travel, tcok him ou
extended trips t¢ Erglend and to Paris. Thus by the age of five ke had a
rudimentary krowledge of both English and Frepch,

He greduated from the Victoria Gymnasinm of Potsdem chiaining his
Arbitur (school-fcaving examination) in the fall of 1505, Ve men winter
termz 1905/06 were spent al Gopville and Cafus Ceilege, puart of the
Uruvarsity o Cambridge, Fngland; 1966/07 at the cniversity of (Stiingen.
From 1997 to 1912, he studied wmder Professor Arrpcld Soremecicld at the
University of Munich and received his Ph, D. in r'hysics in February 1812
His choice of a thesis subject irfluenced hiz entirs scientific career,
"Dispersion and Double Refraction of Electron Lattices (Crysizls) dealt
with the oropagation of light in crystais and was exnlored by him further in
various ways in later papers,

The years of Werld War [ were spent as an X-ray technician of the
German army ox the Russian front,

Returning to wniversity life at the University of Munich ia 1918, he
became Privaidozent (lecturer) there, but soon moved to the Tecknische
Hoctkschule, Stuitgart, in 1921 ae Professor of Theoretical Physics, a
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position he held until 1937, During this time he wrote a book: Kristalle
und Ron‘genstrahlen (Crystals and X-rays), (Springer 1923), and together
with C. Hermann, Strukturbericht 1913-1928 (Structure Report 1913~1928),
(Akad, Verlagsges., 1931).

His first visit to the United States occurred in 1936 when he was
invited to give a course of lectures on X-ray diffraction at the Summer
School in Physics in Amn Arbor. Leaving Germany in 1937, he returned
to Cambridge University, Ergland, where frcm 1937 to 1929 he was a
Reszarck Fellow in the Crystallographic Laboratory. Then he moved to
The Queen's University, Belfast, first as Lecturer, then as Professor of
Matheinatical Physics.

After ten years in Belfast, he moved to the United States and in 1949
became Professor of Physics and Head of the Physics Department at
Polytechnic Institute of Brooklyn, Brookiyn, New York., ™n 1957 he re-
linquished the position as head cf the physics department but remained as
Profescor of Physics untfi he retired in 1959,

Over his long and productive career he has written nuimerous papers
of which he considers some to be fundamental. He is lk:own for his part in
the Ewald-Oseen extinction theorem, and Ewald's reciprocal Iattice is a
subject of study for students of optics and crystals, It is #n important
tool for all work on X-ray diffraction in crystals. Ewal4's principal
achievement is the "Dynamica! Theory of X-ray Diffraction'" which he deslt
with in a number of papers usiny the same principles he }ad empioyed in
ris doctoral thesis and his two-paxt paper published ir 1916 of which his
tbesis was Part . These papers elucidate the princinles which govern tke
transmission of electromagnetic radiation through 4 crystallinre medium,
The wavelength range which iz considered includes both visible light and
X-rays. Because of his work he hrs been the recipient of 2 number cf
honors. He was awarded an honorary doctorate from the Technische
Boehschule, Stuttgart in 1954; University of Paris in 1958; Adelpai Univer-
sity, New York in 1966; and the Univarsity of Munich in 1967. He was
made a Fellow of the Institute of Physics and Physical Soclety {England)
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in 1945; the Amzrican Physical Society, 1952; the Americar Academy of

Arts and Sciences, 1955; The Royal Society, 1958; Akademic Deutscher
Naturforscher (Leopoldina) 1966,
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b bt inadresturts

L He is correspondin® member of the Akademie der Wissenschaffen zu
E Gottingen (1937) and of the Bayerische Akademie der Wissenzchaffen in
Minchen, (1262). He was made an honorary memoer cf Société frangaise
de minéralogie et cristallographie in 1955; Deutsche Mineralogische
Gesellschaft 1958; Cambridge Philosophicei Society, 1269,

U RGIAR LN

Over the years, in addition to his numerous papers, be fcund time to

2 be a co-editor of Zeitschr, f. Kristallographie from 1922 t» 1937; and to
: ke editer of Acta Crystallographica from its ezrlizst beginnings in 1948 to

1959, In addition io the books previously mentiored, he cmitrikided sec-

4 tions to: Landoli-B5rustein Tabellen (two editiors); Miller-Pouillet Lahr-
buch d. Physik (11th Edition 1926) {An Euglish iranslation is in "The Physics
of Solids and Fluids" (1st Ed. 1930, 2nd E¢. 1536) (Blackie)); Handbu.h d.

; Physik (Springer 1927 and 1933); High Spe=d Aerodynamics Vol. 1 (Editor,
F. D. Rossini, Princeton University Press 1955). He was the principal

i author as well as editor of the book '"Fifty Years of X-ray Diffraction”

‘1«).-".». t
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published by the International Union of Crystallography in July 1962 to
celebrate the Lsue and Bragg discoverizs.

g

He was Member of the executive Committee of the International Union

of Crystallographv from 1948 to 1866, and Presidert of the same orgmmza-
tion from 1980 to 1963,

diiiliie it/ EANI O

The January 1968 issue of Acta Crystallographice was dedicated to him
on the oceasion of his 8¢th birthday. The issue contains one of his scientific
articlee and a three page article with the fitie *Personal Reminiscences”,
which contains many interesting biographic remembrances.

His retirement from university life in 1959 was not a retirement from
other activities, Trae, be moved to gquieter s:

L

(
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——————

cundings in New Milford,
Connecticut, but as indicated by dates already given he k1s remained active.

SRR

For a number of years he maintained a rather busy schedile of lectures in
addition to his activities for the International Union of Crystallegraphy.
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Presently, (May 1970}, he continues an active interest in science and car-
ries on a scientific correspondence of some magnitude and occasionally

travels to a meeting even if it is far away from Connecticut.
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